LECTURE-18

GROUP \& RING,SUBGROUP

Introduction to Group

-When we consider the behaviour of permutations under the composition operation we noticed certain underlying structures.
-Permutations are closed under this operation, they exhibit associativity, an identity element exists and an inverse exists for each permutation

- These properties define a general type of algebraic structure called a group.

GROUPS

A group $\langle\mathrm{G}, \bullet\rangle$ or (G, \bullet) is a set G with binary operation - which satisfies the following properties

1. \bullet is a closed operation i.e. if $\mathrm{a} \in \mathrm{G}$ and $\mathrm{b} \in \mathrm{G}$ then $\mathrm{a} \bullet \mathrm{b} \in \mathrm{G}$
2. $\forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Ga} \bullet(\mathrm{b} \bullet \mathrm{c})=(\mathrm{a} \bullet \mathrm{b}) \bullet \mathrm{c}$ this is the associative law
3. G has an element e, called the identity, such that $\forall a \in G a \bullet e=e \cdot a=a$
4. $\forall \mathrm{a} \in \mathrm{G}$ there corresponds an element $a^{-1} \in G$ such that $a \bullet a^{-1}=a^{-1} \bullet a=e$
Examples: (1) The set of all permutations of a set A onto itself is group (called the symmetric group S_{n} for n elements).
(2) The set consisting of all (nxn) matrices that have inverses is a group under ordinary matrix multiplication (it is called GL(n)).

Two show that an algebraic system is a group we must show that it satisfies all the axioms of a group. Question: Let $\left\langle A, \wedge, \vee,^{-}\right\rangle$be a Boolean algebra so that A is a set of propositional elements, \vee is like 'or', \wedge is like 'and' and is like 'not'. Show that $\langle A, \oplus\rangle$ is an abelian group where

$$
\forall \mathrm{a}, \mathrm{~b} \in A \mathrm{a} \oplus \mathrm{~b}=(\mathrm{a} \wedge \overline{\mathrm{~b}}) \vee(\overline{\mathrm{a}} \wedge \mathrm{~b})
$$

Answer:
(1) Associative since $(a \oplus b) \oplus c=a \oplus(b \oplus c)$ prove this ?
(2) Has an identity element 0 (false) since

$$
\forall \mathrm{a} \mathrm{a} \oplus 0=(\mathrm{a} \wedge \overline{0}) \vee(\overline{\mathrm{a}} \wedge 0)=(\mathrm{a} \wedge 1) \vee 0
$$

$=\mathrm{a} \vee 0=\mathrm{a}$
(3) Each element is its own inverse $a \oplus a=(a \wedge \bar{a}) \vee(\bar{a} \wedge a)=0 \vee 0=0$
(4) The operation commutes $a \oplus b=b \oplus a$ prove this?

GROUP OF SYMMETRIES OF A

TRIANGLE

Consider the triangle ${ }^{1}$

We can perform the following transformations on the triangle
$1=$ identity mapping from the plane to itself $\mathrm{p}=$ rotation anticlockwise about O through 120 degrees
$\mathrm{q}=$ rotation clockwise about O through 120 degrees a=reflection in 1 $\mathrm{b}=$ reflection in m
$\mathrm{c}=$ reflection in n

Let $\mathrm{x} \bullet \mathrm{y}$ denote transformation y followed by transformation x for x and y in $\{1, \mathrm{p}, \mathrm{q}, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$ So for example $p \bullet a=c$

\bullet	1	p	q	a	b	c
1	1	p	q	a	b	c
p	p	q	1	c	a	b
q	q	1	p	b	c	a
a	a	b	c	1	p	q
b	b	c	a	q	1	p
c	c	a	b	p	q	1

Notice the table is not symmetric

Abelian Groups

If $\langle\mathrm{G}, \bullet\rangle$ is a group and \bullet is also commutative then $\langle\mathrm{G}, \bullet\rangle$ is referred to as an Abelian group (the name is taken from the 19 'th century mathematician N.H. Abel)

- is commutative means that

$$
\forall \mathrm{a}, \mathrm{~b} \in \mathrm{G}, \mathrm{a} \bullet \mathrm{~b}=\mathrm{b} \bullet \mathrm{a}
$$

Examples: $\langle\mathrm{R},+\rangle,\langle z,+\rangle$ and $\langle\mathrm{R}-\{0\}, \times\rangle$ are abelian groups.

Why is $\langle\mathrm{R}, \times\rangle$ not a group at all?

$$
\text { If } \begin{aligned}
\forall a, b \in Z a \oplus & =a+b \text { if } a+b<n \\
& =a+b-n \text { if } a+b \geq n
\end{aligned}
$$

then $\langle Z, \oplus\rangle$ is an abelian group and is usually referred to as the group of integers modulo n

RING

An algebraic system $\langle\mathrm{A}, \oplus, \bullet\rangle$ is called a ring if the following conditions are satisfied:
(1) $\langle\mathrm{A}, \oplus\rangle$ is an Abelian group
(2) $\langle\mathrm{A}, \bullet\rangle$ is a semigroup
(3) The operation \bullet is distributive over the operation \oplus
Example: $\langle\mathrm{Z},+, \times\rangle$ is a ring since
$\langle\mathrm{Z},+\rangle$ is an Abelian group
$\langle Z, \times\rangle$ is a semigroup
\times distributes over +
A commutative ring is a ring in which \bullet is commutative
A ring with unity contains an element 1 such that $\forall \mathrm{x} \in \mathrm{Ax} \bullet 1=1 \bullet \mathrm{x}=\mathrm{x}$ where $1 \neq 0$ (0 is the identity of $\langle\mathrm{A}, \oplus\rangle$)

Example: the ring of 2×2 matrices under matrix addition and multiplication is a ring with unity. The element $1=I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

SEMIGROUP

An Abelian group is a strengthening of the notion of group (i.e. requires more axioms to be satisfied)

We might also look at those algebraic structures corresponding to a weakening of the group axioms
$\langle A, \bullet\rangle$ is a semigroup if the following conditions are satisfied:

1. \bullet is a closed operation i.e. if $\mathrm{a} \in A$ and $\mathrm{b} \in \mathrm{G}$ then $\mathrm{a} \bullet \mathrm{b} \in A$
2. - is associative

Example: The set of positive even integers $\{2,4,6, \ldots .$.$\} under the operation of ordinary addition$ since

- The sum or two even numbers is an even number - + is associative

The reals or integers are not semigroups under why?

Application \& Future Scope

- Coding Theory
- Cryptography

