

DISCRETE STRUCTURE

LECTURE-18

GROUP & RING, SUBGROUP

TOPICS COVERED

Introduction to Groups
Rings
Abelian groups

INTRODUCTION TO GROUP

- •When we consider the behaviour of permutations under the composition operation we noticed certain underlying structures.
- •Permutations are closed under this operation, they exhibit associativity, an identity element exists and an inverse exists for each permutation
- These properties define a general type of algebraic structure called a group.

GROUPS

A group $\langle G, \bullet \rangle$ or (G, \bullet) is a set G with binary

operation • which satisfies the following properties

1. • is a closed operation i.e. if $a \in G$ and $b \in G$ then $a \bullet b \in G$

2. $\forall a, b, c \in G \ a \bullet (b \bullet c) = (a \bullet b) \bullet c$ this is the associative law

3. G has an element e, called the identity, such that $\forall a \in G \ a \bullet e = e \bullet a = a$

4. $\forall a \in G$ there corresponds an element

 $a^{-1} \in G$ such that $a \bullet a^{-1} = a^{-1} \bullet a = e$

Examples: (1) The set of all permutations of a set *A* onto itself is group (called the *symmetric group* S_n for n elements).

(2) The set consisting of all (nxn) matrices that have inverses is a group under ordinary matrix multiplication(it is called GL(n)).

Two show that an algebraic system is a group we must show that it satisfies all the axioms of a group. Question: Let $\langle A, \wedge, \vee, \overline{} \rangle$ be a Boolean algebra so that A is a set of propositional elements, \vee is like 'or', \wedge is like 'and' and $\overline{}$ is like 'not'. Show that $\langle A, \oplus \rangle$ is an abelian group where

$$\forall a, b \in A \ a \oplus b = (a \land \overline{b}) \lor (\overline{a} \land b)$$

Answer:

(1) Associative since $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ prove this ?

(2) Has an identity element 0 (false) since $\forall a \ a \oplus 0 = (a \land \overline{0}) \lor (\overline{a} \land 0) = (a \land 1) \lor 0$

 $= a \lor 0 = a$

(3) Each element is its own inverse

 $\mathbf{a} \oplus \mathbf{a} = (\mathbf{a} \wedge \overline{\mathbf{a}}) \vee (\overline{\mathbf{a}} \wedge \mathbf{a}) = 0 \vee 0 = 0$

(4) The operation commutes $a \oplus b = b \oplus a$ prove this ?

GROUP OF SYMMETRIES OF A TRIANGLE

We can perform the following transformations on the triangle

1=identity mapping from the plane to itself p=rotation anticlockwise about O through 120 degrees

q=rotation clockwise about O through 120 degrees a=reflection in 1

b=reflection in m

c=reflection in n

Let $x \bullet y$ denote transformation y followed by transformation x for x and y in {1,p,q,a,b,c} So for example $p \bullet a = c$

Notice the table is not symmetric

ABELIAN GROUPS

If $\langle G, \bullet \rangle$ is a group and \bullet is also commutative then $\langle G, \bullet \rangle$ is referred to as an *Abelian group* (the name is taken from the 19'th century mathematician N.H. Abel)

• is commutative means that

 $\forall a, b \in G, a \bullet b = b \bullet a$

Examples: $\langle R, + \rangle, \langle Z, + \rangle$ and $\langle R - \{0\}, \times \rangle$ are abelian groups.

Why is $\langle \mathbf{R}, \times \rangle$ not a group at all? If $\forall \mathbf{a}, \mathbf{b} \in \mathbb{Z} \mathbf{a} \oplus \mathbf{b} = \mathbf{a} + \mathbf{b}$ if $\mathbf{a} + \mathbf{b} < \mathbf{n}$ $= \mathbf{a} + \mathbf{b} - \mathbf{n}$ if $\mathbf{a} + \mathbf{b} \ge \mathbf{n}$

then $\langle Z, \oplus \rangle$ is an abelian group and is usually referred to as the group of *integers modulo n*

RING

An algebraic system $\langle A, \oplus, \bullet \rangle$ is called a *ring* if the following conditions are satisfied:

- (1) $\langle A, \oplus \rangle$ is an Abelian group
- (2) $\langle A, \bullet \rangle$ is a semigroup
- (3) The operation is distributive over the operation \oplus

Example: $\langle Z, +, \times \rangle$ is a ring since $\langle Z, + \rangle$ is an Abelian group

 $\langle Z, \times \rangle$ is a semigroup

 \times distributes over +

A *commutative ring* is a ring in which • is commutative

A ring with unity contains an element 1 such that $\forall x \in A \ x \bullet 1 = 1 \bullet x = x$ where $1 \neq 0$ (0 is the identity of $\langle A, \oplus \rangle$)

Example: the ring of 2x2 matrices under matrix addition and multiplication is a ring with unity. The element $1=I=\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$

SEMIGROUP

An Abelian group is a strengthening of the notion of group (i.e. requires more axioms to be satisfied)

We might also look at those algebraic structures corresponding to a weakening of the group axioms

 $\langle A, \bullet \rangle$ is a semigroup if the following conditions are satisfied:

1. • is a closed operation i.e. if $a \in A$ and

 $b \in G$ then $a \bullet b \in A$

2. • is associative

Example: The set of positive even integers {2,4,6,....} under the operation of ordinary addition since

• The sum or two even numbers is an even number

• + is associative

The reals or integers are not semigroups under why?

APPLICATION & FUTURE SCOPE

Coding Theory

Cryptography