

DISCRETE STRUCTURE

Monoid

TOPICS COVERED

Introduction to Monoid
Groups
Subgroups

INTRODUCTION & DEFINITION OF MONOID

 $\langle A, \bullet \rangle$ is a monoid if the following conditions are satisfied:

1.• is a closed operation i.e. if $a \in A$ and $b \in G$ then $a \bullet b \in A$

2. • is associative

3. There is an identity element

Examples: Let A be a finite set of heights. Let • be a binary operation such that $a \cdot b$ is equal to the taller of a and b. Then $\langle A, \cdot \rangle$ is a monoid where the identity is the shortest person in A

 $\langle \{\text{true, false}\}, \wedge \rangle$ is a monoid: \wedge is associative, true is the identity, but false has no inverse $\langle \{\text{true, false}\}, \vee \rangle$ is a monoid: \vee is associative false is the identity, but true has no inverse

PROPERTIES OF ALGEBRAIC STRUCTURES

properties Semigroup \subseteq monoid \subseteq group \subseteq Abelian Group

Theorem: (unique identity) Suppose that $\langle A, \bullet \rangle$ is a monoid then the identity element is unique

Proof: Suppose there exist two identity elements e and f. [We shall prove that e=f]

 $e = e \bullet f$ (since f is an identity)

= f (since e is an identity)

Theorem: (unique inverse) Suppose that $\langle A, \bullet \rangle$ is a monoid and the element x in A has an inverse. Then this inverse is unique.

Proof: ??

PROPERTIES OF GROUPS

Theorem (The cancellation laws): Let $\langle G, \bullet \rangle$ be a group then $\forall a, x, y \in G$

(i) $a \bullet x = a \bullet y \Rightarrow x = y$ (ii) $x \bullet a = y \bullet a \Rightarrow x = y$

Proof: (i) Suppose that $a \bullet x = a \bullet y$ then by axiom a has an identity a^{-1} and we have that

$$a^{-1} \bullet (a \bullet x) = a^{-1} \bullet (a \bullet y)$$

$$\Rightarrow (a^{-1} \bullet a) \bullet x = (a^{-1} \bullet a) \bullet y \text{ (associativity)}$$

$$\Rightarrow e \bullet x = e \bullet y (a^{-1} \text{ is the inverse})$$

$$\Rightarrow x = y \text{ (identity)}$$

(ii) is proved similarly
Theorem (The division laws): Let $\langle G, \bullet \rangle$ be
a group then $\forall a, x, y \in G$
(i) $a \bullet x = b \Leftrightarrow x = a^{-1} \bullet b$
(ii) $x \bullet a = b \Leftrightarrow x = b^{-1} \bullet a$
Proof ??

Theorem (double inverse) : If x is an element of the group $\langle G, \bullet \rangle$ then

$$(x^{-1})^{-1} = x$$

Proof:

$$(x^{-1})^{-1} \bullet x^{-1} = e\left((x^{-1})^{-1} \text{ is inverse of } x^{-1}\right)$$
$$\Rightarrow ((x^{-1})^{-1} \bullet x^{-1}) \bullet x = e \bullet x = x$$
$$\Rightarrow (x^{-1})^{-1} \bullet (x^{-1} \bullet x) = x \text{ (associativity)}$$
$$\Rightarrow (x^{-1})^{-1} \bullet e = x (x^{-1} \text{ is inverse of } x)$$
$$\Rightarrow (x^{-1})^{-1} = x \text{ (identity)}$$

Theorem (reversal rule) If x and y are elements of the group $\langle G, \bullet \rangle$ then $(x \bullet y)^{-1} = y^{-1} \bullet x^{-1}$

Proof ??

For a an arbitrary element of a group $\langle G, \bullet \rangle$ we can define functions $\sigma_a : G \to G$ and $\rho_a : G \to G$ such that

$$\forall x \in G \sigma_a(x) = a \bullet x \text{ and } \rho_a(x) = x \bullet a$$

Theorem: $\sigma_a : G \to G$ and $\rho_a : G \to G$ are permutations of G

Proof: Consider σ_a

[prove 1-1] suppose for x,y in G $\sigma_a(x) = \sigma_a(y)$ $\Rightarrow a \bullet x = a \bullet y \Rightarrow x = y$ (cancellation laws) [Prove onto] For any y in G $\sigma_a(a^{-1} \bullet y) = a \bullet (a^{-1} \bullet y)$ $= (a \bullet a^{-1}) \bullet y$ (associativity) $= e \bullet y (a^{-1} \text{ is inverse of a})$ = y (identity)

Corollary: In every row or column of the multiplication table of G each element of G appears exactly once.

SUBGROUPS

 $\langle H, \bullet \rangle$ is a subgroup of the group $\langle G, \bullet \rangle$ if $H \subseteq G$ and $\langle H, \bullet \rangle$ is also a group

Examples: $\langle Q - \{0\}, \times \rangle$ is a subgroup of $\langle R - \{0\}, \times \rangle$ $\langle \{1, -1, i, -i\}, \times \rangle$ is a subgroup of $\langle C - \{0\}, \times \rangle$

Test for a subgroup

Let H be a subset of G. Then $\langle H, \bullet \rangle$ is a subgroup of $\langle G, \bullet \rangle$ iff the following conditions all hold:

(1) $H \neq \emptyset$

(2) H is closed under multiplication

(3)
$$x \in H \Rightarrow x^{-1} \in H$$

For every group $\langle G, \bullet \rangle$, $\langle G, \bullet \rangle$ and $\langle \{e\}, \bullet \rangle$ are subgroups

 $\langle \{e\}, \bullet \rangle$ is called the trivial subgroup of $\langle G, \bullet \rangle$ a proper subgroup of $\langle G, \bullet \rangle$ is a subgroup different from G

A non-trivial proper subgroup is a subgroup equal neither to $\langle G, \bullet \rangle$ or to $\langle \{e\}, \bullet \rangle$

ALGEBRAIC STRUCTURES WITH TWO OPERATIONS

- So far we have studied algebraic systems with one binary operation. We now consider systems with two binary operations.
- In such a system a natural way in which two operations can be related is through the property of distributivity;

Let $\langle A, \bullet, * \rangle$ be an algebraic system with two binary operations \bullet and *. Then the operation * is said to distribute over the operation \bullet if $\forall x, y, z \in A \ x \ * (y \bullet z) = (x \ * y) \bullet (x \ * z)$ and

$$(y \bullet z) * x = (y * x) \bullet (z * x)$$

Example: \times distributes over +

- \wedge distributes over \vee
- \vee distributes over \wedge

APPLICATION & SCOPE OF RESECH

- Coding theory
- Cryptography
- Automata Theory