
LECTURE-17
MONOID

InTRODUCTION \& DEFINITION OF Monoid

$\langle A, \bullet\rangle$ is a monoid if the following conditions are satisfied:

1. is a closed operation i.e. if $\mathrm{a} \in A$ and $\mathrm{b} \in \mathrm{G}$ then $\mathrm{a} \bullet \mathrm{b} \in A$
2. - is associative
3. There is an identity element

Examples: Let A be a finite set of heights. Let - be a binary operation such that $\mathrm{a} \bullet \mathrm{b}$ is equal to the taller of a and b . Then $\langle A, \bullet\rangle$ is a monoid where the identity is the shortest person in A
$\langle\{$ true, false $\}, \wedge\rangle$ is a monoid: \wedge is associative, true is the identity, but false has no inverse $\langle\{$ true, false $\}, \vee\rangle$ is a monoid: \vee is associative false is the identity, but true has no inverse

Properties of Algebraic Structures

properties

Semigroup \subseteq monoid \subseteq group \subseteq Abelian Group
Theorem: (unique identity) Suppose that $\langle A, \bullet\rangle$ is a monoid then the identity element is unique

Proof: Suppose there exist two identity elements e and f. [We shall prove that $e=f$]
$e=e \bullet f($ since f is an identity $)$
$=f$ (since e is an identity)
Theorem: (unique inverse) Suppose that $\langle A, \bullet\rangle$ is a monoid and the element x in A has an inverse. Then this inverse is unique.
Proof: ??

PROPERTIES OF GROUPS

Theorem (The cancellation laws): Let $\langle\mathrm{G}, \bullet\rangle$ be a group then $\forall \mathrm{a}, \mathrm{x}, \mathrm{y} \in \mathrm{G}$
(i) $a \bullet x=a \bullet y \Rightarrow x=y$
(ii) $\mathrm{x} \bullet \mathrm{a}=\mathrm{y} \bullet \mathrm{a} \Rightarrow \mathrm{x}=\mathrm{y}$

Proof: (i) Suppose that $\mathrm{a} \bullet \mathrm{x}=\mathrm{a} \bullet \mathrm{y}$ then by axiom a has an identity a^{-1} and we have that
$\mathrm{a}^{-1} \bullet(\mathrm{a} \bullet \mathrm{x})=\mathrm{a}^{-1} \bullet(\mathrm{a} \bullet \mathrm{y})$
$\Rightarrow\left(\mathrm{a}^{-1} \bullet \mathrm{a}\right) \bullet \mathrm{x}=\left(\mathrm{a}^{-1} \bullet \mathrm{a}\right) \bullet \mathrm{y}($ associativity $)$
$\Rightarrow e \bullet x=e \bullet y\left(a^{-1}\right.$ is the inverse $)$
$\Rightarrow \mathrm{x}=\mathrm{y}$ (identity)
(ii) is proved similarly

Theorem (The division laws): Let $\langle\mathrm{G}, \bullet\rangle$ be a group then $\forall \mathrm{a}, \mathrm{x}, \mathrm{y} \in \mathrm{G}$
(i) $a \bullet x=b \Leftrightarrow x=a^{-1} \bullet b$
(ii) $\mathrm{x} \bullet \mathrm{a}=\mathrm{b} \Leftrightarrow \mathrm{x}=\mathrm{b}^{-1} \bullet \mathrm{a}$

Proof ??

Theorem (double inverse) :If x is an element of the group $\langle G, \bullet\rangle$ then

$$
\left(x^{-1}\right)^{-1}=x
$$

Proof:

$\left(\mathrm{x}^{-1}\right)^{-1} \cdot \mathrm{x}^{-1}=\mathrm{e}\left(\left(\mathrm{x}^{-1}\right)^{-1}\right.$ is inverse of $\left.\mathrm{x}^{-1}\right)$
$\Rightarrow\left(\left(\mathrm{x}^{-1}\right)^{-1} \bullet \mathrm{x}^{-1}\right) \cdot \mathrm{x}=\mathrm{e} \bullet \mathrm{x}=\mathrm{x}$
$\Rightarrow\left(\mathrm{x}^{-1}\right)^{-1} \bullet\left(\mathrm{x}^{-1} \bullet \mathrm{x}\right)=\mathrm{x}$ (associativity)
$\Rightarrow\left(\mathrm{x}^{-1}\right)^{-1} \bullet \mathrm{e}=\mathrm{x}\left(\mathrm{x}^{-1}\right.$ is inverse of x$)$
$\Rightarrow\left(\mathrm{x}^{-1}\right)^{-1}=\mathrm{x}$ (identity)
Theorem (reversal rule)
If x and y are elements of the group $\langle G, \bullet\rangle$ then
$(x \cdot y)^{-1}=y^{-1} \cdot x^{-1}$

Proof ??

For a an arbitrary element of a group $\langle\mathrm{G}, \bullet\rangle$ we can define functions $\sigma_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}$ and $\rho_{\mathrm{a}}: \mathrm{G} \rightarrow \mathrm{G}$ such that

$$
\forall \mathrm{x} \in \mathrm{G} \sigma_{\mathrm{a}}(\mathrm{x})=\mathrm{a} \bullet \mathrm{x} \text { and } \rho_{\mathrm{a}}(\mathrm{x})=\mathrm{x} \bullet \mathrm{a}
$$

Theorem: $\sigma_{a}: G \rightarrow G$ and $\rho_{a}: G \rightarrow G$ are permutations of G
Proof: Consider σ_{a}
[prove 1-1] suppose for x, y in G
$\sigma_{a}(x)=\sigma_{a}(y)$
$\Rightarrow \mathrm{a} \bullet \mathrm{x}=\mathrm{a} \bullet \mathrm{y} \Rightarrow \mathrm{x}=\mathrm{y}$ (cancellation laws)
[Prove onto] For any y in G
$\sigma_{a}\left(a^{-1} \bullet y\right)=a \bullet\left(a^{-1} \bullet y\right)$
$=\left(\mathrm{a} \bullet \mathrm{a}^{-1}\right) \bullet \mathrm{y}$ (associativity)
$=e \bullet y\left(a^{-1}\right.$ is inverse of $\left.a\right)$
$=\mathrm{y}$ (identity)
Corollary: In every row or column of the multiplication table of G each element of G appears exactly once.

SUBGROUPS

$\langle\mathrm{H}, \bullet\rangle$ is a subgroup of the group $\langle\mathrm{G}, \bullet\rangle$ if $\mathrm{H} \subseteq \mathrm{G}$ and $\langle\mathrm{H}, \bullet\rangle$ is also a group
Examples: $\langle\mathrm{Q}-\{0\}, \times\rangle$ is a subgroup of $\langle\mathrm{R}-\{0\}, \times\rangle$ $\langle\{1,-1, i,-i\}, \times\rangle$ is a subgroup of $\langle\mathrm{C}-\{0\}, \times\rangle$

Test for a subgroup
Let H be a subset of G . Then $\langle\mathrm{H}, \bullet\rangle$ is a subgroup of $\langle\mathrm{G}, \bullet\rangle$ iff the following conditions all hold:
(1) $\mathrm{H} \neq \varnothing$
(2) H is closed under multiplication
(3) $\mathrm{x} \in \mathrm{H} \Rightarrow \mathrm{x}^{-1} \in \mathrm{H}$

For every group $\langle\mathrm{G}, \bullet\rangle,\langle\mathrm{G}, \bullet\rangle$ and $\langle\{\mathrm{e}\}, \bullet\rangle$ are subgroups
$\langle\{\mathrm{e}\}, \bullet\rangle$ is called the trivial subgroup of $\langle\mathrm{G}, \bullet\rangle$ a proper subgroup of $\langle\mathrm{G}, \bullet\rangle$ is a subgroup different from G

A non-trivial proper subgroup is a subgroup equal neither to $\langle\mathrm{G}, \bullet\rangle$ or to $\langle\{\mathrm{e}\}, \bullet\rangle$

ALGEBRAIC STRUCTURES WITH TWO OpERATIONS

- So far we have studied algebraic systems with one binary operation. We now consider systems with two binary operations.
- In such a system a natural way in which two operations can be related is through the property of distributivity;
Let $\langle\mathrm{A}, \bullet, *\rangle$ be an algebraic system with two binary operations \bullet and $*$. Then the operation * is said to distribute over the operation - if $\forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{Ax} *(\mathrm{y} \bullet \mathrm{z})=(\mathrm{x} * \mathrm{y}) \bullet(\mathrm{x} * \mathrm{z})$ and

$$
(y \bullet z) * x=(y * x) \bullet(z * x)
$$

Example: \times distributes over + \wedge distributes over \vee \vee distributes over \wedge

Application \& Scope of RESECH

- Coding theory
- Cryptography
- Automata Theory

