DISCRETE STRUCTURE

LECTUIRE-16

Recurrence Relations

TOPICS COVERED

n Recurrence Relations
n Modeling with Recurrence Relations

Recurrence Relations

nA recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} is terms of one or more of the previous terms of the sequence, namely, $a_{0}, a_{1}, \ldots, a_{n-1}$, for all integers n with $n \geq n_{0}$, where n_{0} is a nonnegative integer.
nA sequence is called a solution of a recurrence relation if it terms satisfy the recurrence relation.

Recurrence Relations

nIn other words, a recurrence relation is like a recursively defined sequence, but without specifying any initial values (initial conditions).
nTherefore, the same recurrence relation can have (and usually has) multiple solutions.
nlf both the initial conditions and the recurrence relation are specified, then the sequence is uniquely determined.

Recurrence Relations

nExample:

Consider the recurrence relation
$a_{n}=2 a_{n-1}-a_{n-2}$ for $n=2,3,4, \ldots$
nls the sequence $\left\{a_{n}\right\}$ with $a_{n}=3 n$ a solution of this recurrence relation?
nFor $n \geq 2$ we see that
$2 a_{n-1}-a_{n-2}=2(3(n-1))-3(n-2)=3 n=a_{n}$.
n Therefore, $\left\{a_{n}\right\}$ with $a_{n}=3 n$ is a solution of the recurrence relation.

Recurrence Relations

nls the sequence $\left\{a_{n}\right\}$ with $a_{n}=5$ a solution of the same recurrence relation?
nFor $n \geq 2$ we see that
$2 \mathrm{a}_{\mathrm{n}-1}-\mathrm{a}_{\mathrm{n}-2}=2 \cdot 5-5=5=\mathrm{a}_{\mathrm{n}}$.
n Therefore, $\left\{a_{n}\right\}$ with $a_{n}=5$ is also a solution of the recurrence relation.

Modeling with Recurrence Relations

nExample:

nSomeone deposits $\$ 10,000$ in a savings account at a bank yielding 5% per year with interest compounded annually. How much money will be in the account after 30 years?

nSolution:

nLet P_{n} denote the amount in the account after n years.
nHow can we determine P_{n} on the basis of P_{n-1} ?

Modeling with Recurrence Relations

 ${ }^{n}$ We can derive the following recurrence relation: ${ }_{n} P_{n}=P_{n-1}+0.05 P_{n-1}=1.05 P_{n-1}$.${ }^{n}$ The initial condition is $P_{0}=10,000$.
nThen we have:
${ }_{n P} P_{1}=1.05 P_{0}$
${ }_{n P_{2}}=1.05 \mathrm{P}_{1}=(1.05)^{2} \mathrm{P}_{0}$
${ }_{n P_{3}}=1.05 \mathrm{P}_{2}=(1.05)^{3} \mathrm{P}_{0}$
n...
$n P_{n}=1.05 P_{n-1}=(1.05)^{n} P_{0}$
nWe now have a formula to calculate P_{n} for any natural number n and can avoid the iteration.

Modeling with Recurrence Relations

nLet us use this formula to find P_{30} under the ninitial condition $P_{0}=10,000$:
${ }_{n} P_{30}=(1.05)^{30} \cdot 10,000=43,219.42$
n
After 30 years, the account contains $\$ 43,219.42$.

Solving Recurrence Relations

nDefinition: A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form:
$n a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$,
${ }_{n}$ Where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers, and $c_{k} \neq 0$.
nA sequence satisfying such a recurrence relation is uniquely determined by the recurrence relation and the k initial conditions

$$
n a_{0}=C_{0}, a_{1}=C_{1}, a_{2}=C_{2}, \ldots, a_{k-1}=C_{k-1}
$$

Solving Recurrence Relations

nExamples:

${ }_{n}$ The recurrence relation $\mathrm{P}_{\mathrm{n}}=(1.05) \mathrm{P}_{\mathrm{n}-1}$ nis a linear homogeneous recurrence relation of degree one.
n The recurrence relation $f_{n}=f_{n-1}+f_{n-2}$ nis a linear homogeneous recurrence relation of degree two.
${ }_{n}$ The recurrence relation $a_{n}=a_{n-5}$ nis a linear homogeneous recurrence relation of degree five.

Solving Recurrence Relations

 nBasically, when solving such recurrence relations, we try to find solutions of the form $a_{n}=r^{n}$, where r is a constant.$n a_{n}=r^{n}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$ if and only if $n r^{n}=c_{1} r^{n-1}+c_{2} r^{n-2}+\ldots+c_{k} r^{n-k}$.
nDivide this equation by r^{n-k} and subtract the righthand side from the left:
$n r^{k}-\mathrm{C}_{1} r^{\mathrm{k}-1}-\mathrm{C}_{2}{ }^{\mathrm{r}-2}-\ldots-\mathrm{C}_{\mathrm{k}-1} \mathrm{r}-\mathrm{C}_{\mathrm{k}}=0$
${ }_{n T h i s}$ is called the characteristic equation of the recurrence relation.

Solving Recurrence Relations

nExample: What is the solution of the recurrence relation $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}-1}+2 \mathrm{a}_{\mathrm{n}-2}$ with $\mathrm{a}_{0}=2$ and $\mathrm{a}_{1}=7$?
nSolution: The characteristic equation of the recurrence relation is $r^{2}-r-2=0$.
nlts roots are $r=2$ and $r=-1$.
${ }_{n}$ Hence, the sequence $\left\{a_{n}\right\}$ is a solution to the recurrence relation if and only if:
${ }^{n} a_{n}=\alpha_{1} 2^{n}+\alpha_{2}(-1)^{n}$ for some constants α_{1} and α_{2}.

Solving Recurrence Relations

nGiven the equation $\mathrm{a}_{\mathrm{n}}=\alpha_{1} 2^{\mathrm{n}}+\alpha_{2}(-1)^{\mathrm{n}}$ and the initial conditions $\mathrm{a}_{0}=2$ and $\mathrm{a}_{1}=7$, it follows that $n a_{0}=2=\alpha_{1}+\alpha_{2}$
$n \mathrm{a}_{1}=7=\alpha_{1} \cdot 2+\alpha_{2} \cdot(-1)$
nSolving these two equations gives us $\alpha_{1}=3$ and $\alpha_{2}=-1$.
nTherefore, the solution to the recurrence relation and initial conditions is the sequence $\left\{a_{n}\right\}$ with $n a_{n}=3 \cdot 2^{n}-(-1)^{n}$.

Solving Recurrence Relations

$n a_{n}=r^{n}$ is a solution of the linear homogeneous recurrence relation
$a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$
nif and only if
$n r^{n}=c_{1} r^{n-1}+c_{2} r^{n-2}+\ldots+c_{k} r^{n-k}$.
nDivide this equation by r^{n-k} and subtract the righthand side from the left:
$n r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\ldots-c_{k-1} r-c_{k}=0$
${ }_{n}$ This is called the characteristic equation of the recurrence relation.

Solving Recurrence Relations

nExample: Give an explicit formula for the Fibonacci numbers.
nSolution: The Fibonacci numbers satisfy the recurrence relation $f_{n}=f_{n-1}+f_{n-2}$ with initial conditions $f_{0}=0$ and $f_{1}=1$.
n The characteristic equation is $r^{2}-r-1=0$.
nlts roots are

Solving Recurrence Relations

nTherefore, the Fibonacci numbers are given by

$$
f_{n}=\alpha_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\alpha_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

for some constants α_{1} and α_{2}.
We candetermine values for these constants so that the sequence meets the conditions $f_{0}=0$ and $f_{1}=1$:

$$
\begin{aligned}
& f_{0}=\alpha_{1}+\alpha_{2}=0 \\
& \qquad f_{1}=\alpha_{1}\left(\frac{1+\sqrt{5}}{2}\right)+\alpha_{2}\left(\frac{1-\sqrt{5}}{2}\right)=1
\end{aligned}
$$

Solving Recurrence Relations

nThe unique solution to this system of two equations and two variables is

$$
\alpha_{1}=\frac{1}{\sqrt{5}}, \alpha_{2}=-\frac{1}{\sqrt{5}}
$$

So finally we obtained an explicit formula for the Fibonaccinumbers:

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Solving Recurrence Relations

nBut what happens if the characteristic equation has only one root?
nHow can we then match our equation with the initial conditions a_{0} and a_{1} ?
n Theorem: Let c_{1} and c_{2} be real numbers with $c_{2} \neq$ 0 . Suppose that $r^{2}-c_{1} r-c_{2}=0$ has only one root r_{0}.
A sequence $\left\{a_{n}\right\}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ if and only if $a_{n}=\alpha_{1} r_{0}{ }^{n}+\alpha_{2} n r_{0}{ }^{n}$, for $n=0,1,2, \ldots$, where α_{1} and α_{2} are constants.

Solving Recurrence Relations

nExample: What is the solution of the recurrence relation $\mathrm{a}_{\mathrm{n}}=6 \mathrm{a}_{\mathrm{n}-1}-9 \mathrm{a}_{\mathrm{n}-2}$ with $\mathrm{a}_{0}=1$ and $\mathrm{a}_{1}=6$? nSolution: The only root of $r^{2}-6 r+9=0$ is $r_{0}=3$. Hence, the solution to the recurrence relation is $n a_{n}=\alpha_{1} 3^{n}+\alpha_{2} n 3^{n}$ for some constants α_{1} and α_{2}. nTo match the initial condition, we need
na $a_{0}=1=\alpha_{1}$
$a_{1}=6=\alpha_{1} \cdot 3+\alpha_{2} \cdot 3$
nSolving these equations yields $\alpha_{1}=1$ and $\alpha_{2}=1$.
n Consequently, the overall solution is given by
$n a_{n}=3^{n}+n 3^{n}$.

