DISCRETE STRUCTURE

1

LECTUIRE-16

Recurrence Relations

TOPICS COVERED

n Recurrence Relationsn Modeling with Recurrence Relations

nA recurrence relation for the sequence $\{a_n\}$ is an equation that expresses a_n is terms of one or more of the previous terms of the sequence, namely, a_0 , a_1 , ..., a_{n-1} , for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer.

nA sequence is called a **solution** of a recurrence relation if it terms satisfy the recurrence relation.

nIn other words, a recurrence relation is like a recursively defined sequence, but without specifying any initial values (initial conditions).

ⁿTherefore, the same recurrence relation can have (and usually has) **multiple solutions**.

nlf both the initial conditions and the recurrence relation are specified, then the sequence is uniquely determined.

nExample:

Consider the recurrence relation

 $a_n = 2a_{n-1} - a_{n-2}$ for n = 2, 3, 4, ...

Is the sequence $\{a_n\}$ with $a_n=3n$ a solution of this recurrence relation?

nFor $n \ge 2$ we see that $2a_{n-1} - a_{n-2} = 2(3(n - 1)) - 3(n - 2) = 3n = a_n$. nTherefore, $\{a_n\}$ with $a_n=3n$ is a solution of the recurrence relation.

Is the sequence $\{a_n\}$ with $a_n=5$ a solution of the same recurrence relation?

nFor n ≥ 2 we see that $2a_{n-1} - a_{n-2} = 2.5 - 5 = 5 = a_n$.

ⁿTherefore, $\{a_n\}$ with $a_n=5$ is also a solution of the recurrence relation.

Modeling with Recurrence Relations

nExample:

nSomeone deposits \$10,000 in a savings account at a bank yielding 5% per year with interest compounded annually. How much money will be in the account after 30 years?

nSolution:

ⁿLet P_n denote the amount in the account after n years.

ⁿHow can we determine P_n on the basis of P_{n-1} ?

Modeling with Recurrence Relations ⁿWe can derive the following **recurrence relation**: $nP_n = P_{n-1} + 0.05P_{n-1} = 1.05P_{n-1}$ nThe initial condition is $P_0 = 10,000$. nThen we have: $nP_1 = 1.05P_0$ $nP_2 = 1.05P_1 = (1.05)^2P_0$ ${}_{n}P_{3} = 1.05P_{2} = (1.05)^{3}P_{0}$ **n**... ${}^{n}P_{n} = 1.05P_{n-1} = (1.05){}^{n}P_{0}$ ⁿWe now have a **formula** to calculate P_n for any

natural number n and can avoid the iteration.

Modeling with Recurrence Relations

nLet us use this formula to find P_{30} under the ninitial condition $P_0 = 10,000$:

 ${}^{n}P_{30} = (1.05)^{30} \cdot 10,000 = 43,219.42$

n

After 30 years, the account contains \$43,219.42.

Definition: A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form:

 $na_n = c_1a_{n-1} + c_2a_{n-2} + \dots + c_ka_{n-k}$, $nWhere c_1, c_2, \dots, c_k$ are real numbers, and $c_k \neq 0$.

nA sequence satisfying such a recurrence relation is uniquely determined by the recurrence relation and the k initial conditions

$$a_0 = C_0, a_1 = C_1, a_2 = C_2, \dots, a_{k-1} = C_{k-1}.$$

nExamples:

ⁿThe recurrence relation $P_n = (1.05)P_{n-1}$ nis a linear homogeneous recurrence relation of **degree one**.

The recurrence relation $f_n = f_{n-1} + f_{n-2}$ n is a linear homogeneous recurrence relation of **degree two**.

nThe recurrence relation $a_n = a_{n-5}$ nis a linear homogeneous recurrence relation of **degree five**.

ⁿBasically, when solving such recurrence relations, we try to find solutions of the form $a_n = r^n$, where r is a constant.

 $\begin{aligned} \mathbf{n}a_n &= \mathbf{r}^n \text{ is a solution of the recurrence relation} \\ a_n &= \mathbf{c}_1 \mathbf{a}_{n-1} + \mathbf{c}_2 \mathbf{a}_{n-2} + \ldots + \mathbf{c}_k \mathbf{a}_{n-k} \text{ if and only if} \\ \mathbf{n}r^n &= \mathbf{c}_1 r^{n-1} + \mathbf{c}_2 r^{n-2} + \ldots + \mathbf{c}_k r^{n-k}. \end{aligned}$

ⁿDivide this equation by r^{n-k} and subtract the righthand side from the left:

 $nr^{k} - C_{1}r^{k-1} - C_{2}r^{k-2} - \dots - C_{k-1}r - C_{k} = 0$

ⁿThis is called the **characteristic equation** of the recurrence relation.

Example: What is the solution of the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 2$ and $a_1 = 7$?

Solution: The characteristic equation of the recurrence relation is $r^2 - r - 2 = 0$.

Its roots are r = 2 and r = -1.

nHence, the sequence $\{a_n\}$ is a solution to the recurrence relation if and only if:

 $na_n = \alpha_1 2^n + \alpha_2 (-1)^n$ for some constants α_1 and α_2 .

nGiven the equation $a_n = \alpha_1 2^n + \alpha_2 (-1)^n$ and the initial conditions $a_0 = 2$ and $a_1 = 7$, it follows that

$$na_0 = 2 = \alpha_1 + \alpha_2$$

 $na_1 = 7 = \alpha_1 \cdot 2 + \alpha_2 \cdot (-1)$

nSolving these two equations gives us $\alpha_1 = 3$ and $\alpha_2 = -1$.

nTherefore, the solution to the recurrence relation and initial conditions is the sequence $\{a_n\}$ with $na_n = 3 \cdot 2^n - (-1)^n$.

 $na_n = r^n$ is a solution of the linear homogeneous recurrence relation

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$ nif and only if

$$\mathbf{n}\mathbf{r}^{n} = \mathbf{C}_{1}\mathbf{r}^{n-1} + \mathbf{C}_{2}\mathbf{r}^{n-2} + \dots + \mathbf{C}_{k}\mathbf{r}^{n-k}.$$

ⁿDivide this equation by r^{n-k} and subtract the righthand side from the left:

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \dots - c_{k-1}r - c_{k} = 0$$

ⁿThis is called the **characteristic equation** of the recurrence relation.

Example: Give an explicit formula for the Fibonacci numbers.

Solution: The Fibonacci numbers satisfy the recurrence relation $f_n = f_{n-1} + f_{n-2}$ with initial conditions $f_0 = 0$ and $f_1 = 1$.

ⁿThe characteristic equation is $r^2 - r - 1 = 0$. ⁿIts roots are

$$r_1 = \frac{1 + \sqrt{5}}{2}, \quad r_2 = \frac{1 - \sqrt{5}}{2}$$

nTherefore, the Fibonacci numbers are given by

$$f_n = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$$

for some constants α_1 and α_2 .

We can determine values for these constants so that the sequence meets the conditions $f_0 = 0$ and $f_1 = 1$:

$$f_0 = \alpha_1 + \alpha_2 = 0$$

$$f_1 = \alpha_1 \left(\frac{1 + \sqrt{5}}{2} \right) + \alpha_2 \left(\frac{1 - \sqrt{5}}{2} \right) = 1$$

ⁿThe unique solution to this system of two equations and two variables is

$$\alpha_1 = \frac{1}{\sqrt{5}}, \ \alpha_2 = -\frac{1}{\sqrt{5}}$$

So finally we obtained an explicit formula for the Fibonacci numbers:

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

ⁿBut what happens if the characteristic equation has only one root?

ⁿHow can we then match our equation with the initial conditions a_0 and a_1 ?

nTheorem: Let c_1 and c_2 be real numbers with $c_2 \neq 0$. Suppose that $r^2 - c_1 r - c_2 = 0$ has only one root r_0 .

A sequence $\{a_n\}$ is a solution of the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ if and only if $a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n$, for n = 0, 1, 2, ..., where α_1 and α_2 are constants.

Example: What is the solution of the recurrence relation $a_n = 6a_{n-1} - 9a_{n-2}$ with $a_0 = 1$ and $a_1 = 6$? **Solution:** The only root of $r^2 - 6r + 9 = 0$ is $r_0 = 3$. Hence, the solution to the recurrence relation is $na_n = \alpha_1 3^n + \alpha_2 n 3^n$ for some constants α_1 and α_2 . ⁿTo match the initial condition, we need $na_0 = 1 = \alpha_1$ $a_1 = 6 = \alpha_1 \cdot 3 + \alpha_2 \cdot 3$ nSolving these equations yields $\alpha_1 = 1$ and $\alpha_2 = 1$. nConsequently, the overall solution is given by $na_n = 3^n + n3^n$.