DISCRETE STRUCTURE

LECTURE-14

Introduction to Combinations

LECTURE-14

- Combinations
- R-combination
- Combinatorial proof

Introduction to Combinations

- How many different committees of 3 students can be formed from a group of 4 students?
- We need to find the number of subsets with 3 elements from the set containing 4 students
- We see that there are 4 such subsets, one for each of the 4 students as choosing 4 students is the same as choosing one of the 4 students to leave out of the group
- This means there are 4 ways to choose 3 students for the committee, where th order in which these students are chosen does not matter

R-COMBINATION

- An r-combination of elements of a set is an unordered selection of r elements from the set
- An r-combination is simply a subset of the set with r elements
- Denote by $\mathrm{C}(\mathrm{n}, \mathrm{r})$. Note that $\mathrm{C}(\mathrm{n}, \mathrm{r})$ is also denoted by and is called a binomial coefficient

$$
\binom{n}{r}
$$

EXAMPLE

- Let S be the set $\{1,2,3,4\}$. Then $\{1,3,4\}$ is a 3combination from S
- We see that $C(4,2)=6$, as the 2-combination of $\{a$, $b, c, d\}$ are 6 subsets $\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b$, $d\}$, and $\{\mathrm{c}, \mathrm{d}\}$

R-COMBINATION

- We can determine the number of r-combinations of a set with n elements using the formula for the number of r-permutations of a set
- Note that the r-permutations of a set can be obtained by first forming r -combinations and then ordering the elements in these combinations

R-COMBINATION

- The number of r-combinations of a set with n elements, where n is a nonnegative integer and r is an integer with $0 \leq r \leq n$ equals

$$
C(n, r)=\frac{n!}{r!(n-r)!}
$$

- Proof: The r-permutations of the set can be obtained by forming the $\mathrm{C}(\mathrm{n}, \mathrm{r}) \mathrm{r}$-combinations and then ordering the elements in each r-permutation which can be done in $\mathrm{P}(\mathrm{r}, \mathrm{r})$ ways

$$
\begin{aligned}
& P(n, r)=C(n, r) \cdot P(r, r) \\
& C(n, r)=\frac{P(n, r)}{P(r, r)}=\frac{n!/(n-r)!}{r!/(r-r)!}=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

R-COMBINATION

- When computing r-combination
$C(n, r)=\frac{n!}{r!(n-r)!}=\frac{P(n, r)}{r!}=\frac{n(n-1) \cdots(n-r+1)}{r!}$
thus cancéling out all the terms in the larger factorial

EXAMPLE

- How many poker hands of 5 cards can be dealt from a standard deck of 52 cards? Also, how many ways are there to select 47 cards from a standard deck of 52 cards?
- Choose 5 out of 52 cards: $\mathrm{C}(52,5)=52!/(5!47!)=$ $(52 \times 51 \times 50 \times 49 \times 48) /(5 \times 4 \times 3 \times 2 \times 1)=26 \times 17 \times 10 \times 49 \times 12=$ 2,598,960
- $C(52,47)=52!/(47!5!)=2,5,98,960$

Corollary 2

- Let n and r be nonnegative integers with $r \leq n$. Then $C(n, r)=C(n, n-r)$
- Proof:

$$
\begin{aligned}
& C(n, r)=\frac{n!}{r!(n-r)!} \\
& C(n, n-r)=\frac{n!}{(n-r)!(n-(n-r))!}=\frac{n!}{(n-r)!r!}
\end{aligned}
$$

COMBINATORIAL PROOF

- A combinatorial proof of an identity is a proof that uses counting arguments to prove that both sides of the identity count the same objects but in different ways
- Proof of Corollary 2: Suppose that S is a set with n elements. Every subset A of S with r elements corresponds to a subset of S with n-r elements, i.e., . Thus, $\mathrm{C}(\mathrm{n}, \mathrm{r})=\mathrm{C}(\mathrm{n}, \mathrm{n}-\mathrm{r})$

Application \& Scope of research

- Mathematics
- Find the complexity of probability problem

