DISCRETE STRUCTURE

LECTURE-13

Permutation \& Combination

TOPICS COVERED

n Permutations
n Combination

Introduction to Permutations

n Counting:

- Find out the number of ways to select a particular number of elements from a set
- Sometimes the order of these elements matter
n Example:
- How many ways we can select 3 students from a group of 5 students?
- How many different ways they stand in line ${ }_{4}$ for picture?

Permutation

n How many ways can we select 3 students from a group of 5 to stand in lines for a picture?
n First note that the order in which we select students matters
n There are 5 ways to select the $1^{\text {st }}$ student
n Once the $1^{\text {st }}$ student is selected, there are 4 ways to select the $2^{\text {nd }}$ student in line. By product rule, there are $5 \times 4 \times 3=60$ ways to select 3 student from a group of 5 students to stand line for picture

Permutation

n How many ways can we arrange all 5 in a line for a picture?
n By product rule, we have $5 \times 4 \times 3 \times 2 \times 1=120$ ways to arrange all 5 students in a line for a picture

Permutation

n A permutation of a set of distinct objects is an ordered arrangement of these objects
n An ordered arrangement of r elements of a set is called an r-permutation
n The number of r-permutation of a set with n element is denoted by $\mathrm{P}(\mathrm{n}, \mathrm{r})$. We can find $P(n, r)$ using the product rule
n Example: Let $S=\{1,2,3\}$. The ordered arrangement $3,1,2$ is a permutation of S. The ordered arrangement 3,2 , is a 2 permutation of S

Permutation

n Let $S=\{a, b, c\}$. The 2-permutation of S are the ordered arrangements, a, b; a, $\mathrm{c} ; \mathrm{b}, \mathrm{a} ; \mathrm{b}, \mathrm{c} ; \mathrm{c}, \mathrm{a}$; and c, b
${ }^{n}$ Consequently, there are 6 2permutation of this set with 3 elements
n Note that there are 3 ways to choose the $1^{\text {st }}$ element and then 2 ways to choose the $2^{\text {nd }}$ element
n By product rule, there are $\mathrm{P}(3,2)=3 \times 2$ $=6$

r-permutation

n Theorem 1: If n is a positive and r is an integer with $1 \leq r \leq n$, then there are $\mathrm{P}(\mathrm{n}, \mathrm{r})=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) . .(\mathrm{n}-\mathrm{r}+1)$ r-permutations of a set with n elements
n Proof: Use the product rule, the first element can be chosen in n ways. There are $n-1$ ways to chose the $2^{\text {nd }}$ element. Likewise, there are $\mathrm{n}-2$ ways to choose $3^{\text {rd }}$ element, and so on until there are exactly $\mathrm{n}-(\mathrm{r}-1)=\mathrm{n}-\mathrm{r}+1$ ways to choose the r-th element. Thus, there are $n \cdot(n-$ 1) $\cdot(\mathrm{n}-2) \ldots \cdot(\mathrm{n}-\mathrm{r}+1) \mathrm{r}$-permutations of the set

r-permutation

n Note that $p(n, 0)=1$ whenever n is a nonnegative integer as there is exactly one way to order zero element
n Corollary 1: If n and r are integers with $0 \leq r \leq n$, then $P(n, r)=n!/(n-r)!$
n Proof: When n and r are integers with $1 \leq r \leq n$, by Theorem 1 we have
$\mathrm{P}(\mathrm{n}, \mathrm{r})=\mathrm{n}(\mathrm{n}-1) . .(\mathrm{n}-\mathrm{r}+1)=\mathrm{n}!/(\mathrm{n}-\mathrm{r})$!
n As $n!/(n-0)!=1$ when n is a nonnegative integer, we have $\mathrm{P}(\mathrm{n}, \mathrm{r})=\mathrm{n}!/(\mathrm{n}-\mathrm{r})$! also holds when $\mathrm{r}=0$

r-permutation

n By Theorem 1, we know that if n is a positive integer, then $P(n, n)=n$!
n Example: How many ways are there to select a $1^{\text {st }}$ prize winner, a $2^{\text {nd }}$ prize winner, and a $3^{\text {rd }}$ prize winner from 100 different contestants?
n $P(100,3)=100 \times 99 \times 98=970,200$

Assignment

${ }_{n}$ How many permutations of the letters ABCDEFGH contain string ABC?
${ }^{n}$ As ABC must occur as a block, we can find the answer by finding the permutations of 6 letters, the block ABC and the individual letters, D,E,F,G, and H. As these 6 objects must occur in any order, there are 6!=720 permutations of the letters ABCDEFGH in which ABC occurs in a block

Application \& Scope of research

n To find the complexity of sorting algorithm
n To find the Searching algorithm

