

Discrete Structure

Lecture-4

Function and its types

Topics Covered

- Functions
- Pigeonhole principle
- Application of functions

Functions, Pige onfole Principle

$\mathcal{F u n c t i o n s}$

Informally, we are given an "input set", and a function gives us an output for each possible input.

The important point is that there is only one output for each input.

We say a function f "maps" the element of an input set \mathcal{A} to the elements of an output set \mathcal{B}.

Functions

More formally, we write $f: A \rightarrow B$
to represent that f is a functionfromset \mathfrak{A} to $\operatorname{set} \mathcal{B}$, which associates anelement $f(a) \in B$ with anelement $a \in A$.

The domain (input) of f is \mathcal{A}.
The codomain (output) of f is \mathcal{B}.

Definition: For every input there is exactly one output.

Note: the input set can be the same as the output set, e.g. Goth are integers.

$$
\begin{aligned}
& \text { Examples of } \mathcal{F} u n c t i o n s \\
& f(x)=e^{x} \\
& f(x)=\log (x) \\
& \text { domain }=\mathcal{R} \\
& \text { codomain }=\mathcal{R}^{>0} \\
& \text { domain }=R^{>0} \\
& \text { codomain }=\mathcal{R} \\
& f(x)=\sin (x) \\
& f(x)=\sqrt{x} \\
& \text { domain }=\mathcal{R} \\
& \text { codomain }=[-1,1] \\
& \text { domain }=\mathcal{R}^{>0} \\
& \text { codomain }=\mathcal{R}^{>0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Examples of Functions } \\
& f(S)=|S| \quad \begin{array}{l}
\text { domain = the set of all finite sets } \\
\text { codomain = non-negative integers }
\end{array} \\
& f(\text { string })=\text { length(string) } \begin{array}{l}
\text { domain = the set of all finite strings } \\
\text { codomain = non-negative integers }
\end{array} \\
& f(\text { student-name })=\text { student-ID } \begin{array}{l}
\text { notafunction, } \\
\text { since one input could have } \\
\text { more than one output }
\end{array} \\
& f(x)=\text { is-prime }(x) \quad \begin{array}{l}
\text { domain = positive integers } \\
\text { codomain = \{T, } \mathcal{F}\}
\end{array}
\end{aligned}
$$

Injections

$f: A \rightarrow B$ is an injection if no two inputs have the same output.

Surjections

$f: A \rightarrow B$ is a surjection if every output is possible.

$$
|A| \geq|B|
$$

Bijections
$f: A \rightarrow B$ is a bijection if it is surjection and injection.

Given an element y in \mathcal{B}, the inverse set of $y:=f^{-1}(y)=\{x$ in $\mathcal{A} \mid f(x)=y\}$.
In words, this is the set of inputs that are mapped to y.
More generally, for a subset \mathcal{Y} of \mathcal{B},
the inverse set of $\mathcal{Y}:=f^{-1}(\mathcal{Y})=\{x$ in $\mathcal{A} \mid f(x)$ in $\mathcal{Y}\}$.

Inverse Function

Informally, an inverse function f^{-1} is to "undo" the operation of function f.

There is an inverse function f^{-1} for f if and only if f is a bijection.

Composition of Functions

Two functions $f: X->Y^{\prime}, g: Y->Z$ so that \mathcal{Y}^{\prime} is a subset of \mathcal{Y}, then the composition of f and g is the function $g \circ f: X->Z$, where

$$
g \circ f(x)=g(f(x))
$$

Assignment

$\mathcal{F u n c t i o n f}$	\mathcal{F} unction \mathcal{I}	$g \circ f$ injective?	$\begin{aligned} & g \circ f \\ & \text { surjective? } \end{aligned}$	$g \circ f$ bijective?
$\begin{aligned} & f: x->y \\ & f \text { surjective } \end{aligned}$	$g: \mathcal{Y}->Z$ g injective			
$\begin{aligned} & f: X->y \\ & f \text { surjective } \end{aligned}$	$\begin{aligned} & g: \mathcal{Y}->Z \\ & g \text { surjective } \end{aligned}$			
$\begin{aligned} & f: x->y \\ & f \text { injective } \end{aligned}$	$\begin{aligned} & g: \mathcal{Y}->Z \\ & g \text { surjective } \end{aligned}$			
$\begin{aligned} & f: x->y \\ & f \text { bijective } \end{aligned}$	$g: \mathcal{Y}->Z$ g bijective			
$f: x->y$	$f^{-1}: Y->x$			

Pige ontrole Principle

If more pigeons

than pige ontroles,

Pige onfole Principle

then some fole must fiave at le ast two pige ons!

Pige ontrole principle
A function from alarger set to a smaller set cannot be injective.
(There must be at least two elements in the domain that are
mapped to the same element in the codomain.)

Example 1

Question: Let $\mathcal{A}=\{1,2,3,4,5,6,7,8\}$

If five distinct integers are selected from \mathcal{A}, must a pair of integers have a sum of 9?

Consider the pairs $\{1,8\},\{2,7\},\{3,6\},\{4,5\}$.
The sum of each pair is equal to 9.
If we choose 5 numbers from the set \mathcal{A},
then by the pigeonfiole principle, both elements of some pair will be chosen, and their sum is equal to 9.

Example 2

Question: In a party of n people, is it always true that there are two people shaking fands with the same number of people?

Everyone canshake hand with 0 to $n-1$ people, and there are n people, and so it does not seem that it must be the case, but think about it carefully:
Case 1: if there is a person who does not shake fand with others, then any person can shake hands with at most n-2 people, and so everyone shakes fiand with 0 to n-2 people, and so the answer is "yes" by the pigeonthole principle.

Case 2: if everyone shakes fiand with at least one person, then any person shakes fand with 1 to n - 1 people, and so the answer is "yes" by the pigeonkole principle.

Application of POSEI: Birtfday Paradox

In a group of 367 people, there must be two people faving the same birthday.
Suppose $n<=365$, what is the probability that in a random set of n people, some pair of them will have the same birthday?

We canthink of it as picking n random numbers from 1 to 365 without repetition.

There are 365^{n} ways of picking n numbers from 1 to 365 .
There are $365 \cdot 364 \cdot 363 \cdot \ldots(365-n+1)$ ways of
picking n numbers from 1 to 365 without repetition.

So the probability that no pairs have the same birthday is equal to $365 \cdot 364 \cdot 363 \cdot \ldots:(365-n+1) / 365^{n}$

This is smaller than 50% for 23 people, smaller than 1% for 57 people.

Generalized Pigeonhole Principle

Generalized Pigeonhole Principle
If n pigeons and roles, then some hole has at le as $\left\lceil\frac{n}{h}\right\rceil$ pigeons.

Cannot have <3 cards in every hole.

Application of Function: Subset Sum

We are asking whether two subsets must have the same sum.
We can ask whe ther the opposite can fold: whether all subsets fiave different sums.

We will show that it is not possible for all subsets to have different sums.

The strategy is by counting.

We will count how many possible different subsets are there, say the answer is X.

And we will also count how many possible different sums are there, say the ans is \mathcal{Y}.

If $x>\mathcal{Y}$, then by the pige onfole principle, there are more inputs than outputs and thus it is not possible for all subsets to have different sums.

Subset Sum

Let \mathcal{A} be the set of the 90 numbers, each with at most 25 digits. So the totalsum of the 90 numbers is at most 90×10^{25}.

Let X be the set of all subsets of the 90 numbers.

Let 9 be the set of integers from 0 to 90×10^{25}.

Let $f: X->y$ be a function mapping each subset of \mathcal{A} into its sum.

If we could show that $|x|>|\mathcal{Y}|$, then by the pigeonthole principle, the function f must map two elements in X into the same element in \mathscr{Y}. This means that there are two subsets with the same sum.

Exercises

Function	Domain	Codomain	Injective?	Surjective?	Bijective?
$f(x)=\sin (x)$	Real	Real			
$f(x)=2 x$	Real	Positive real			
$f(x)=x^{2}$	Real	Non- negative real			
Reverse string	Bit strings of length n Bit strings of length n				

Whether a function is injective, surjective, bijective depends on its domain (i.e. input) and the codomain (i.e. output).

Application ${ }^{\text {GS Sope of research }}$
Relational database

