### **DISCRETE STRUCTURE**

1

# **LECTURE-8**

# Partial ordering relation & lattice



# **TOPICS COVERED**

Partially Ordered Set (POSET) Comparable/Incomparable Totally Ordered, Chains Well-Ordered Set Hasse Diagrams Latices

# Introduction to Partially Ordered Set (POSET)

A relation *R* on a set *S* is called a *partial ordering* or *partial order* if it is *reflexive*, *antisymmetric*, and *transitive*. A set *S* together with a partial ordering *R* is called a *partially ordered set*, or *poset*, and is denoted by (*S*, *R*)

# Example (1)

Let  $S = \{1, 2, 3\}$  and let  $R = \{(1,1), (2,2), (3,3), (1, 2), (3,1), (3,2)\}$ 



#### In a poset the notation $a \prec b$ denotes that $(a,b) \in R$

This notation is used because the "*less than or* equal to" relation is a paradigm for a partial ordering. (Note that the symbol  $\preccurlyeq$  is used to denote the relation in *any* poset, not just the "less than or equals" relation.) The notation  $a \preccurlyeq b$  denotes that  $a \preccurlyeq b$ , but  $a \neq b$ 

3

1

2

Let  $S = \{1, 2, 3\}$  and let  $R = \{(1,1), (2,2), (3,3), (1, 2), (3,1), (3,2)\}$ 

 $2 \prec 2$   $3 \prec 2$ 

## Example (2)

Consider the set of real numbers and the "less than or equal to" relation.  $(R, \leq)$ 

### Example (3)

# Consider the power set of $\{a, b, c\}$ and the subset relation. $(P(\{a,b,c\}), \subseteq)$

#### Comparable/Incomparable

The elements *a* and *b* of a poset  $(S, \preccurlyeq)$  are called *comparable* if either  $a \preccurlyeq b$  or  $b \preccurlyeq a$ . When *a* and *b* are elements of *S* such that neither  $a \preccurlyeq b$  nor  $b \preccurlyeq a$ , *a* and *b* are called *incomparable*.

Consider the power set of  $\{a, b, c\}$  and the subset relation.  $(P(\{a,b,c\}), \subseteq)$ 

 $\{a,c\} \not\subseteq \{a,b\}$  and  $\{a,b\} \not\subseteq \{a,c\}$ 

So, {*a*,*c*} and {*a*,*b*} are *incomparable* 

#### **Totally Ordered, Chains**

If  $(S, \preccurlyeq)$  is a poset and every two elements of *S* are comparable, *S* is called *totally ordered* or *linearly ordered* set, and  $\preccurlyeq$  is called a *total order* or a *linear order*. A totally ordered set is also called a *chain*.

Consider the set of real numbers and the "less than or equal to" relation.  $(R, \leq)$ 

#### **Well-Ordered Set**

 $(S, \preccurlyeq)$  is a *well-ordered set* if it is a poset such that  $\preccurlyeq$  is a total ordering and such that every nonempty subset of *S* has a *least element*.

Example: Consider the ordered pairs of positive integers,  $Z^+ \ge Z^+$  where  $(a_1, a_2) \preccurlyeq (b_1, b_2)$  if  $a_1 < b_1$ , or if  $a_1 = b_1$  and  $a_2 \le b_2$ 



# Hasse Diagrams

Given any partial order relation defined on a finite set, it is possible to draw the directed graph so that all of these properties are satisfied.

This makes it possible to associate a somewhat simpler graph, called a *Hasse diagram*, with a partial order relation defined on a finite set.

# Hasse Diagrams (continued)

Start with a directed graph of the relation in which all arrows point upward. Then eliminate:

- 1. the loops at all the vertices,
- 2. all arrows whose existence is implied by the transitive property,
- 3. the direction indicators on the arrows.

Let A =  $\{1, 2, 3, 9, 19\}$  and consider the "divides" relation on A:

For all  $a, b \in A$ ,  $a \mid b \Leftrightarrow b = ka$  for some integer k.



Eliminate the loops at all the vertices.

Eliminate all arrows whose existence is implied by the transitive property.

Eliminate the direction indicators on the arrows.



#### Maximal and Minimal Elements

*a* is a *maximal* in the poset ( $S, \leq$ ) if there is  $n \phi \in S$  such that  $a \prec b$ . Similarly, an element of a poset is called *minimal* if it is not greater than any element of the poset. That is, *a* is *minimal* if there is no elem/ents such that  $b \prec a$ .

It is possible to have multiple minimals and maximals.

# Greatest Element Least Element

*a* is the *greatest element* in the poset ( $S, \leq$ ) if  $b \prec a$ for all  $b \in S$ . Similarly, an element of a poset is called the *least element* if it is less than all other elements in the poset That is, *a* is *least element* if there is no  $b \in S$ such that  $b \prec a$ .

#### Upper bound, Lower bound

Sometimes it is possible to find an element that is greater than all the elements in a subset *A* of a poset  $(S, \leq)$ . If *u* is an element of *S* such that  $a \leq u$  for all elements  $a \in A$ , then *u* is called an *upper bound* of *A*. Likewise, there may be an element less than all the elements in *A*. If *l* is an element of *S* such that  $l \leq a$  for all elements  $a \in A$ , then *l* is called a *lower bound* of *A*.

# Least Upper Bound, Greatest Lower Bound

The element *x* is called the *least upper bound* of the subset *A* if *x* is an upper bound that is less than every other upper bound of *A*.

The element *y* is called the *greatest lower bound* of *A* if *y* is a lower bound of *A* and  $z \prec y$  whenever *z* is a lower bound of *A*.

# Lattices

A partially ordered set in which *every pair* of elements has both a least upper bound and a greatest lower bound is called a *lattice*.



#### Lattice

Theorem: Let <L,  $\leq$ > be a lattice. If x\*y (x+y) denotes the glb (lub) for {x,y}, then the following holds. For any a, b, c $\in$  L, (i) a\*a=a (i') a+a=a (Idempotent) (ii) a\*b=b\*a (ii') a+b=b+a (Commutative) (iii) (a\*b)\*c= a\*(b\*c) (iii') (a+b)+c= a+(b+c) (Associative) (iv) a\*(a+b)=a (iv') a+(a\*b)=a (Absorption

# **Topological Sorting**

A total ordering  $\prec$  is said to be compatible with the partial ordering *R* if  $a \prec b$  whenever *a R b*. Constructing a total ordering from a partial ordering is called *topological sorting*.

Consider the set  $A = \{2, 3, 4, 6, 18, 24\}$  ordered by the "divides" relation. The Hasse diagram follows:



The ordinary "less than or equal to" relation  $\leq$  on this set is a topological sorting for it since for positive integers *a* and *b*, if *a*|*b* then  $a \leq b$ .

#### Application & Scope of Research of POSET

#### Application

Assemble an AutomobileDecision Algorithm

#### Scope of research

Expressiveness & complexity in underspecified semantic
Assisted Calculation proof & proof checking based on POSET

