
Representation of 
Relations
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INTRODUCTION TO RELATIONS
 When (a, b) belongs to R, a is said to be related to 
b by R.
 Example: Let P be a set of people, C be a set of 
cars, and D be the relation describing which person 
drives which car(s).
 P = {Carl, Suzanne, Peter, Carla}, 
 C = {Mercedes, BMW, tricycle}
 D = {(Carl, Mercedes), (Suzanne, Mercedes),

(Suzanne, BMW), (Peter, tricycle)}
 This means that Carl drives a Mercedes, Suzanne 
drives a Mercedes and a BMW, Peter drives a tricycle, 
and Carla does not drive any of these vehicles.
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RELATIONS
If we want to describe a relationship between 
elements of two sets A and B, we can use ordered 
pairs with their first element taken from A and  their 
second element taken from B. 
Since this is a relation between two sets, it is called 
a binary relation.

Definition: Let A and B be sets. A binary relation 
from A to B is a subset of AB.

In other words, for a binary relation R we have 
R  AB. We use the notation aRb to denote that (a, 
b)R and aRb to denote that (a, b)R. 33



RELATIONS ON A SET

Definition: A relation on the set A is a relation from A 
to A.

In other words, a relation on the set A is a subset of 
AA.

Example: Let A = {1, 2, 3, 4}. Which ordered pairs 
are in the relation R = {(a, b) | a < b} ?
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RELATIONS ON A SET

Solution: R = {

55

(1, 2),(1, 2),(1, 3),(1, 3), (1, 4),(1, 4), (2, 3),(2, 3),(2, 4),(2, 4),(3, 4)}(3, 4)}
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RELATIONS ON A SET
How many different relations can we define on a 
set A with n elements?
A relation on a set A is a subset of AA.
How many elements are in AA ?

There are n2 elements in AA, so how many 
subsets (= relations on A) does AA have?

The number of subsets that we can form out of a 
set with m elements is 2m. Therefore, 2n2 subsets can 
be formed out of AA.

Answer: We can define 2n2 different relations 
on A.
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PROPERTIES OF RELATIONS
We will now look at some useful ways to classify 
relations.
Definition: A relation R on a set A is called reflexive
if (a, a)R for every element aA.
Are the following relations on {1, 2, 3, 4} reflexive?

77

R = {(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)}R = {(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)} No.No.
R = {(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)}R = {(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)} Yes.Yes.
R = {(1, 1), (2, 2), (3, 3)}R = {(1, 1), (2, 2), (3, 3)} No.No.

Definition:Definition: A relation on a set A is called A relation on a set A is called 
irreflexiveirreflexive if (a, a)if (a, a)R for every element R for every element aaAA..



PROPERTIES OF RELATIONS

Definitions:

A relation R on a set A is called symmetric if (b, 
a)R whenever (a, b)R for all a, bA. 

A relation R on a set A is called antisymmetric if 
a = b whenever (a, b)R and (b, a)R.

A relation R on a set A is called asymmetric if 
(a, b)R implies that (b, a)R for all a, bA. 
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PROPERTIES OF RELATIONS
Are the following relations on {1, 2, 3, 4} 
symmetric, antisymmetric, or asymmetric?

99

R = {(1, 1), (1, 2), (2, 1), (3, 3), (4, 4)}R = {(1, 1), (1, 2), (2, 1), (3, 3), (4, 4)} symmetricsymmetric
R = {(1, 1)}R = {(1, 1)} sym. and sym. and 

antisym.antisym.

R = {(1, 3), (3, 2), (2, 1)}R = {(1, 3), (3, 2), (2, 1)} antisym. antisym. 
and asym.and asym.

R = {(4, 4), (3, 3), (1, 4)}R = {(4, 4), (3, 3), (1, 4)} antisym.antisym.



PROPERTIES OF RELATIONS
Definition: A relation R on a set A is called 
transitive if whenever (a, b)R and (b, c)R, then (a, 
c)R for a, b, cA. 

Are the following relations on {1, 2, 3, 4} 
transitive?

1010

R = {(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)}R = {(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)} Yes.Yes.

R = {(1, 3), (3, 2), (2, 1)}R = {(1, 3), (3, 2), (2, 1)} No.No.

R = {(2, 4), (4, 3), (2, 3), (4, 1)}R = {(2, 4), (4, 3), (2, 3), (4, 1)} No.No.



COUNTING RELATIONS
Example: How many different reflexive relations can 
be defined on a set A containing n elements?

Solution: Relations on R are subsets of AA, which 
contains n2 elements.
Therefore, different relations on A can be generated 
by choosing different subsets out of these n2

elements, so there are 2n2 relations.
A reflexive relation, however, must contain the n 
elements (a, a) for every aA.
Consequently, we can only choose among n2 – n = 
n(n – 1) elements to generate reflexive relations, so 
there are 2n(n – 1) of them.
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N-ARY RELATIONS

In order to study an interesting application of 
relations, namely databases, we first need to 
generalize the concept of binary relations to n-ary
relations.

Definition: Let A1, A2, …, An be sets. An n-ary
relation on these sets is a subset of A1A2…An.
The sets A1, A2, …, An are called the domains of the 
relation, and n is called its degree.
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N-ARY RELATIONS

Example:
Let R = {(a, b, c) | a = 2b  b = 2c with a, b, cN}

What is the degree of R?
The degree of R is 3, so its elements are triples.
What are its domains?

Its domains are all equal to the set of integers.
Is (2, 4, 8) in R?

No.
Is (4, 2, 1) in R?

Yes.
1313



DATABASES AND RELATIONS

Let us take a look at a type of database 
representation that is based on relations, namely the
relational data model.

A database consists of n-tuples called records, 
which are made up of fields.
These fields are the entries of the n-tuples.

The relational data model represents a database as 
an n-ary relation, that is, a set of records.
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DATABASES AND RELATIONS
Example: Consider a database of students, whose 
records are represented as 4-tuples with the fields 
Student Name, ID Number, Major, and GPA:

R = {(Ackermann, 231455, CS, 3.88),
(Adams, 888323, Physics, 3.45),
(Chou, 102147, CS, 3.79),
(Goodfriend, 453876, Math, 3.45),
(Rao, 678543, Math, 3.90),
(Stevens, 786576, Psych, 2.99)}

Relations that represent databases are also called 
tables, since they are often displayed as tables.
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DATABASES AND RELATIONS
A domain of an n-ary relation is called a primary key
if the n-tuples are uniquely determined by their values 
from this domain.
This means that no two records have the same value 
from the same primary key.
In our example, which of the fields Student Name, 
ID Number, Major, and GPA are primary keys?
Student Name and ID Number are primary keys, 
because no two students have identical values in 
these fields.
In a real student database, only ID Number would 
be a primary key.
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DATABASES AND RELATIONS

In a database, a primary key should remain one 
even if new records are added.
Therefore, we should use a primary key of the 
intension of the database, containing all the n-tuples
that can ever be included in our database.

Combinations of domains can also uniquely 
identify n-tuples in an n-ary relation.
When the values of a set of domains determine an 
n-tuple in a relation, the Cartesian product of these 
domains is called a composite key.
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DATABASES AND RELATIONS
We can apply a variety of operations on n-ary
relations to form new relations.

Definition: The projection Pi1, i2, …, im
maps the n-

tuple (a1, a2, …, an) to the m-tuple (ai1
, ai2

, …, aim
), 

where m  n.

In other words, a projection Pi1, i2, …, im
keeps the m 

components ai1
, ai2

, …, aim 
of an n-tuple and deletes 

its (n – m) other components.

Example: What is the result when we apply the 
projection P2,4 to the student record (Stevens, 786576, 
Psych, 2.99) ?
Solution: It is the pair (786576, 2.99). 1818



DATABASES AND RELATIONS

In some cases, applying a projection to an entire 
table may not only result in fewer columns, but also in 
fewer rows.

Why is that?

Some records may only have differed in those fields 
that were deleted, so they become identical, and 
there is no need to list identical records more than 
once.
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DATABASES AND RELATIONS

We can use the join operation to combine two tables 
into one if they share some identical fields.

Definition: Let R be a relation of degree m and S a 
relation of degree n. The join Jp(R, S), where p  m 
and p  n, is a relation of degree m + n – p that 
consists of all (m + n – p)-tuples
(a1, a2, …, am-p, c1, c2, …, cp, b1, b2, …, bn-p),
where the m-tuple (a1, a2, …, am-p, c1, c2, …, cp) 
belongs to R and the n-tuple (c1, c2, …, cp, b1, b2, …, 
bn-p) belongs to S.
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DATABASES AND RELATIONS

In other words, to generate Jp(R, S), we have to find 
all the elements in R whose p last components match 
the p first components of an element in S.

The new relation contains exactly these matches, 
which are combined to tuples that contain each 
matching field only once.
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DATABASES AND RELATIONS

Example: What is J1(Y, R), where Y contains the 
fields Student Name and Year of Birth,
Y = {(1978, Ackermann),

(1972, Adams),
(1917, Chou),
(1984, Goodfriend),
(1982, Rao),
(1970, Stevens)},

and R contains the student records as defined 
before ?
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DATABASES AND RELATIONS

Solution: The resulting relation is:
 {(1978, Ackermann, 231455, CS, 3.88),

(1972, Adams, 888323, Physics, 3.45),
(1917, Chou, 102147, CS, 3.79),
(1984, Goodfriend, 453876, Math, 3.45),
(1982, Rao, 678543, Math, 3.90),
(1970, Stevens, 786576, Psych, 2.99)}

Since Y has two fields and R has four, the relation 
J1(Y, R) has 2 + 4 – 1 = 5 fields.
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REPRESENTING RELATIONS
We already know different ways of representing 
relations. We will now take a closer look at two ways 
of representation: Zero-one matrices and directed 
graphs.

If R is a relation from A = {a1, a2, …, am} to B = 
{b1, b2, …, bn}, then R can be represented by the zero-
one matrix MR = [mij] with
mij = 1,   if (ai, bj)R, and
mij = 0,  if (ai, bj)R.

Note that for creating this matrix we first need to list 
the elements in A and B in a particular, but arbitrary 
order. 2424



EQUIVALENCE RELATIONS

Equivalence relations are used to relate objects 
that are similar in some way.

Definition: A relation on a set A is called an 
equivalence relation if it is reflexive, symmetric, and 
transitive.

Two elements that are related by an equivalence 
relation R are called equivalent.
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EQUIVALENCE RELATIONS

Since R is symmetric, a is equivalent to b whenever 
b is equivalent to a.

Since R is reflexive, every element is equivalent to 
itself.

Since R is transitive, if a and b are equivalent and b 
and c are equivalent, then a and c are equivalent.

Obviously, these three properties are necessary for a 
reasonable definition of equivalence.
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EQUIVALENCE RELATIONS
Example: Suppose that R is the relation on the set 
of strings that consist of English letters such that aRb
if and only if l(a) = l(b), where l(x) is the length of the 
string x. Is R an equivalence relation?
Solution:
• R is reflexive, because l(a) = l(a) and therefore 
aRa for any string a.

• R is symmetric, because if l(a) = l(b) then l(b) = 
l(a), so if aRb then bRa.

• R is transitive, because if l(a) = l(b) and l(b) = l(c), 
then l(a) = l(c), so aRb and bRc implies aRc.
R is an equivalence relation. 2727



PARTITIONS
 Consider the relation R = { (a,b) | a  b mod 2}

 This splits the integers into two equivalence classes: 
even numbers and odd numbers

 Those two sets together form a partition of the 
integers

 Formally, a partition of a set S is a collection of non-
empty disjoint subsets of S whose union is S

 In this example, the partition is { [0], [1] }
 Or { {…, -3, -1, 1, 3, …}, {…, -4, -2, 0, 2, 4, …} }



APPLICATION & SCOPE OF RESEARCH

 Database system
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