DISCRETE STRUCTURE

LECTURE-5

Introduction to Set Theory

TOPICS COVERED

- Examples of set
- Types of set

Sets

Introduction to Sets

Definition: A set is collection of distinct objects.

The objects in a set are called the elements or members of the set \mathcal{S}, and we say \mathcal{S} contains its elements.

We candefine a set by directly listing all its elements.

$$
\begin{aligned}
e . g \cdot S & =\{2,3,5,7,11,13,17,19\} \\
\mathcal{S} & =\{\operatorname{CSC} 1130, \operatorname{CSC} 2110, \mathcal{E R G} 2020, \mathcal{M A T} 2510\}
\end{aligned}
$$

After we define a set, the set is a single mathematicalobject, and it can be anelement of another set.

$$
e \cdot g \cdot S=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}
$$

Defining Sets by Properties

It is inconvenient, and sometimes impossigle, to define a set by listing all its elements.

Alternatively, we candefine by a set by describing the properties that its elements should satisfy.

We use the notation $\{x \in A \mid P(x)\}$
to define the set as the set of elements, x,
in \mathfrak{A} suchtrat x satisfies property \mathcal{P}.
e.g. $\{x \mid x$ is a prime number and $x<1000\}$ $\{x \mid x$ is a real number and $-2<x<5\}$

Examples of Sets

Well known sets: • the set of all real numbers, \mathbb{R}

- the set of all complex numbers, \mathbb{C}
- the set of all integers, \mathbb{Z}
- the set of all positive integers \mathbb{Z}^{+}
- empty set, $\emptyset=\{ \}$ the set with no elements.

Other examples:
The set of all polynomials with degree at most three: $\left\{1, x, x^{2}, x^{3}, 2 x+3 x^{2}, \ldots\right\}$.
The set of all n- bit strings: $\{000 . .0,000 . .1, . ., 111 . .1\}$
The set of all triangles without an obtuse angle: \{
The set of all graphs with four nodes: \{

Membersfip

Order, number of occurence are not important.

$$
e \cdot g \cdot\{a, b, c\}=\{c, b, a\}=\{a, a, b, c, b\}
$$

The most basic question in set theory is whether anelement is in a set.

$x \in A \quad x$ is anelement of $\mathcal{A} \quad x \notin A \quad x$ is not anelement of \mathcal{A} χ is in \mathcal{A} χ is not in \mathcal{A}

e.g. Recall that Z is the set of all integers. So $7 \in \mathbb{Z}$ and $2 / 3 \notin \mathrm{Z}$.

Let \mathcal{P} be the set of all prime numbers. Then $97 \in P$ and $321 \notin P$
Let Q be the set of all rational numbers. Then $0.5 \in Q$ and $\sqrt{2} \notin Q$ (will prove later)

Size of a Set

In this course we mostly focus on finite sets.

Definition: The size of a set \mathcal{S}, denoted by $|\mathcal{S}|$, is defined as the number of elements contained in S.
e.g. if $S=\{2,3,5,7,11,13,17,19\}$, then $|\mathcal{S}|=8$.
if $S=\{C S C 1130, \mathcal{C S C 2 1 1 0 , E R G 2 0 2 0 , ~ M A T 2 5 1 0 \} , ~ t h e n ~}|S|=4$.
if $\mathcal{S}=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$, then $|S|=6$.

Later we will study fow to determine the size of the following sets:

- the set of poker hands which are "full house".
- the set of n-bit strings without three consecutive ones.
- the set of valid ways to add n pairs of parentheses

Application \mathfrak{H} Scope of research of Set Theory

-Set theory is seen as the foundation from which virtually all of mathematics can be derived. For example, structures in abstract algebrasuch as group, field ering, are sets closed under one or more operations.

- Application of set is also found in Database System, Fuzzy logic.
- programming, data structures, data bases, algoritfms, formal languages and compilers, operating systems, computer security, operations research
-Scope of researcfi

Data mining
Computer Aided design

Types of Sets

Empty sets: A set fraving no element is called an empty set. It is also known as null set or void set. It is denoted by

For example:
(a) $A=\left\{x \in R / x^{2}=-10\right\}=\phi$
(6) $\mathrm{B}=$ set of immortal man $=\phi$

Singletonset: A set fraving single element is called single ton set.
For example, $\{2\},\{0\},\{5\}$ are single ton set.

Types of Sets

Finite set: \mathfrak{A} set is called a finite set if it is called either void set or its elements can be counted by natural numbers and process of listing terminates at a certain natural numbers.

For example, $\{1,2,4,6\}$ is a finite set because it has four elements.

Infinite set: \mathcal{A} set which is not a finite set, i.e. the counting up of whose elements is impossible, is called an infinite set.

For example:
(i) The set of all straight line in a given plane.
(ii) The set of all natural numbers.
(iii) The set of realnumbers between '1'and 2':

Cardinal number or order of a finite set

The totalnumber of elements in a finite set is called cardinal number or order of a finite set. It is denoted by n(A).
For example, if
$A=\{1,2,3,4,5\} \Rightarrow n(A)=5$ or $o(A)=5$.

Set of sets: \mathcal{A} set S having all its elements as sets is called set of sets.

For example:
$\mathcal{S}=\{\{1,2\},\{2,4\},\{3,5,7\}\}$

But $S=\{\{1,2\}, 4,\{3,5,7\}\}$ is not a set of sets as
$3 \in \mathrm{~S}^{\text {is not a set. }}$

Equivalent and Equal Sets

Equivalent sets: Two finite sets \mathcal{A} and \mathcal{B} are
equivalent if their cardinal number is same, i.e.
$n(\mathcal{A})=n(\mathcal{B})$.

```
Equalsets:T Two sets }\mathcal{A}\mathrm{ and }\mathcal{B}\mathrm{ are said to be equal
if everyelement of }\mathcal{A}\mathrm{ is a member of }\mathcal{B}\mathrm{ , and every
element of }\mathcal{B}\mathrm{ is a member of }\mathcal{A}\mathrm{ .
```

For example:
$\mathcal{A}=\{4,5,6\}$ and
$\mathcal{B}=\{a, b, c\}$ are equivalent $\mathfrak{b u t}$
$\mathcal{A}=\{4,5,6\}$ and
$\mathcal{C}=\{6,5,4\}$ are equal, i.e. $\mathcal{A}=\mathcal{C}$.

Equivalent and Equal

 Sets$A \equiv B \quad$ if $n(A)=n(B)$

$\mathcal{A}=\mathcal{C} \quad$ if eachelement of each set is equal to eachother

Subsets and Proper Subsets

Subsets: \mathcal{A} set \mathcal{A} is said to be a subset of a set \mathcal{B} if eachelement of \mathcal{A} is also an element of \mathcal{B}.
$A \subseteq B$, if $x \in A \Rightarrow x \in B$

Subset

Definition: Given two sets \mathcal{A} and \mathcal{B}, we say \mathcal{A} is a subset of \mathcal{B}, denoted by $A \subseteq B$, if everyelement of \mathcal{A} is also anelement of \mathcal{B}.

- If $\mathcal{A}=\{4, \mathcal{B}, 12,16\}$ and $\mathcal{B}=\{2,4,6,8,10,12,14,16\}$, then $A \subseteq B$ but $B \nsubseteq A$
- $A \subseteq A$ because every element in \mathcal{A} is anelement of \mathcal{A}.
- $\emptyset \subseteq$ A for any \mathcal{A} because the empty set has no elements.
- If \mathcal{A} is the set of prime numbers and \mathcal{B} is the set of odd numbers, then $A \nsubseteq B$

$$
\text { Fact: If } A \subseteq B, \text { then }|\mathcal{A}|<|\mathcal{B}| \text {. }
$$

Proper Subset, Equality

Definition: Given two sets \mathcal{A} and \mathcal{B}, we say \mathcal{A} is a proper subset of \mathcal{B}, denoted by $A \subset B$, if everyelement of \mathcal{A} is anelement of \mathcal{B}, $\mathcal{B u t}$ there is anelement in \mathcal{B} that is not contained in \mathcal{A}.

$$
\text { Fact: If } A \subset B \text {, then }|\mathcal{A}|<|\mathcal{B}| \text {. }
$$

Definition: Given two sets \mathcal{A} and \mathcal{B}, we say $\mathcal{A}=\mathcal{B}$ if $A \subseteq B$ and $B \subseteq A$.

$$
\text { Fact: If } \mathcal{A}=\mathcal{B} \text {, then }|\mathcal{A}|=|\mathcal{B}| \text {. }
$$

Subsets and Proper Subsets

Proper subset: \mathcal{A} set \mathcal{A} is said to be a
proper subset of a set \mathcal{B} if every element
of \mathcal{A} is an element of \mathcal{B} and \mathcal{B} has at le ast
one element which is not anelement of \mathcal{A}.

It can be written as
$A \subset B$

For example:
Let $\mathcal{A}=\{1,2,3\}, \mathcal{B}=\{2,3,4,1,5\}$, then
$A \subset B$.

Thus if \mathcal{A} is a proper subset of \mathcal{B}, thenthere exists an element such that

$$
x \in B \quad x \notin A .
$$

For example,
$\{1\} \subset\{1,2,3\}$ but $\{1,4\} \not \subset\{1,2,3\}$.

Procedure for Proving Equality of Sets

As we have discussed earlier that two
sets \mathcal{A} and \mathcal{B} are said to be equal if
everyelement of set \mathcal{A} is anelement
of set \mathcal{B} and everyelement of \mathcal{B} is an
element of \mathcal{A}.

It is clear that $\quad \mathrm{A}=\mathrm{B} \Leftrightarrow \mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{A}$.
i.e. $A=B \Leftrightarrow[x \in A \Leftrightarrow x \in B]$.

Some Results on

(ii) The empty set is a subset of everyset.
(iii) The total number of subsets of a finite set containing nelements is 2^{n}.

Proof: We know that ${ }^{n} C_{r}$ denotes the number of ways for choosing r things from n different things. Therefore each selection of r things gives a subset of the set \mathcal{A} containing r elements.
\therefore The number of subsets of \mathcal{A} faving no element ${ }^{n} \mathcal{C}_{0}$ The number of subsets of \mathcal{A} faving one element ${ }^{n} C_{1}$

Some Results on Subsets

The number of subsets of \mathcal{A} faving two elements $={ }^{n} \mathcal{C}_{2}$

The number of subsets of \mathcal{A} faving nelements $={ }^{n} C_{n}$.
Hence, the total number of subsets of \mathcal{A}
$={ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots+{ }^{n} C_{n}=2^{n}$
[\because We know that

$$
(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\ldots+{ }^{n} C_{n} x^{n} .
$$

Putting $\chi=1$, we get

$$
2^{n}={ }^{n} C_{0}+{ }^{n} C_{1}^{l}+{ }^{n} C_{2}+\ldots+{ }^{n} C_{n} .
$$

Power Set

```
The set of all the subsets of a given set \(\mathcal{A}\) is said to be the power set of
\(\mathcal{A}\) and is denoted by \(\mathcal{P}(\mathcal{A})\).
```

i.e. $P(A)=\{S \mid S \subseteq A\} \Rightarrow S \in P(A) \Leftrightarrow S \subseteq A$

Also, $\quad \phi \in \mathrm{P}(\mathrm{A})$ and $\mathrm{A} \in \mathrm{P}(\mathrm{A}) \quad$ for all sets \mathfrak{A}.
For example, if $\mathcal{A}=\{a, b, c\}$, then
$P(A)=\{\phi,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$.

Universal Set

Any set which is super set of all the sets under consideration is called the
universal set and is denoted by

Ω or U.

For example:
(i) When we are using sets containing natural numbers then \mathcal{N} is the universal set.

Euler-Venn Diagram

Application \& Scope of research of Set

Database System
Fuzzy Logic

