The Basic Concepts of Set Theory

Chapter 2: The Basic Concepts of Set Theory

2.1 Symbols and Terminology
2.2 Venn Diagrams and Subsets
2.3 Set Operations and Cartesian Products
2.4 Surveys and Cardinal Numbers

Section 2-1

Symbols and Terminology

Symbols and Terminology

- Designating Sets
- Sets of Numbers and Cardinality
- Finite and Infinite Sets
- Equality of Sets

Designating Sets

A set is a collection of objects. The objects

 belonging to the set are called the elements, or members of the set.Sets are designated using:

1) word description,
2) the listing method, and
3) set-builder notation.

Designating Sets

Word description
The set of even counting numbers less than 10

The listing method
$\{2,4,6,8\}$
Set-builder notation $\{x \mid x$ is an even counting number less than 10$\}$

Designating Sets

Sets are commonly given names (capital letters). $A=\{1,2,3,4\}$

The set containing no elements is called the empty set (null set) and denoted by \{ \} or \varnothing.

To show 2 is an element of set A use the symbol \in.
$2 \in\{1,2,3,4\}$
$a \notin\{1,2,3,4\}$

Example: Listing Elements of Sets

Give a complete listing of all of the elements of the set $\{x \mid x$ is a natural number between 3 and 8\}

Solution
 $\{4,5,6,7\}$

Sets of Numbers

Natural (counting) $\{1,2,3,4, \ldots\}$
Whole numbers $\{0,1,2,3,4, \ldots\}$
Integers $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
Rational numbers $\left\{\left.\frac{p}{q} \right\rvert\, p\right.$ and q are integers, with $\left.q \neq 0\right\}$
May be written as a terminating decimal, like 0.25 , or a repeating decimal like 0.333...
Irrational $\{x \mid x$ is not expressible as a quotient of integers $\}$
Decimal representations never terminate and never repeat.
Real numbers $\{x \mid x$ can be expressed as a decimal $\}$

Cardinality

The number of elements in a set is called the cardinal number, or cardinality of the set.

The symbol $n(A)$, read " n of A," represents the cardinal number of set A .

Example: Cardinality

Find the cardinal number of each set.
a) $K=\{a, l, g, e, b, r\}$
b) $M=\{2\}$
c) \varnothing

Solution
a) $n(K)=6$
b) $n(M)=1$
c) $n(\varnothing)=0$

Finite and Infinite Sets

If the cardinal number of a set is a particular whole number, we call that set a finite set.

Whenever a set is so large that its cardinal number is not found among the whole numbers, we call that set an infinite set.

Example: Infinite Set

The odd counting numbers are an infinite set.
Word description
The set of all odd counting numbers
Listing method
$\{1,3,5,7,9, \ldots\}$
Set-builder notation
$\{x \mid x$ is an odd counting number $\}$

Equality of Sets

Set A is equal to set B provided the following two conditions are met:

1. Every element of A is an element of B, and
2. Every element of B is an element of A.

Example: Equality of Sets

State whether the sets in each pair are equal.
a) $\{a, b, c, d\} a n d\{a, c, d, b\}$
b) $\{2,4,6\}$ and $\{x \mid x$ is an even number $\}$

Solution

a) Yes, order of elements does not matter
b) No, $\{2,4,6\}$ does not represent all the even numbers.

