DISCRETE STRUCTURE

LECTURE-3

Sets Operation

Introduction to Set Operation

- Basic operation performed on set are

1. Union
2. Intersection
3. Difference
4. Complement

Basic Operations on Sets

Let A, B be two subsets of a universal set U (depending on the context U could be R, Z, or other sets).
intersection: $A \cap B=\{x \in U \mid x \in A$ and $x \in B\}$
Defintion: Two sets are said to be disjoint if their intersection is an empty set.

e.g. Let A be the set of odd numbers, and B be the set of even numbers. Then A and B are disjoint.
union: $A \cup B=\{x \in U \mid x \in A$ or $x \in B\}$
Fact: $|A \cup B|=|A|+|B|-|A \cap B|$

Basic Operations on Sets

difference: $A-B=\{x \in U \mid x \in A$ and $x \notin B\}$ Fact: $|A-B|=|A|-|A \cap B|$
complement: $\bar{A}=A^{c}=\{x \in U \mid x \notin A\}$
e.g. Let $U=Z$ and A be the set of odd numbers.
 Then \bar{A} is the set of even numbers.

Fact: If $A \subseteq B^{\text {nen }} \quad \bar{B} \subseteq \bar{A}$

Examples

$A=\{1,3,6,8,10\} \quad B=\{2,4,6,7,10\}$
$A \cap_{B}=\{6,10\}, \quad A \quad B=\{1,2,3,4,6,7,8,10\} \quad A-B=\{1,3,8\}$

Let $\mathrm{U}=\{\mathrm{x} \in \mathrm{Z} \mid 1<=\mathrm{x}<=100\}$.
$A=\{x \in U \mid x$ is divisible by 3$\}, B=\{x \quad l \in \mid x$ is divisible by 5$\}$
$A \cap B=\{x \in J \mid x$ is divisible by 15$\}$
$A \cup B=\{x \in J \mid x$ is divisible by 3 or is divisible by 5 (or both) $\}$
$A-B=\{x \in U \mid x$ is divisible by 3 but is not divisible by 5$\}$

Exercise: compute $|A|,|B|,|A \quad B \cap| A \quad B|,, \mathrm{AA}-\mathrm{B}|$.

Cartesian Products

Definition: Given two sets A and B, the Cartesian product $A \times B$ is the set of all ordered pairs (a, b), where a is in A and b is in B. Formally,

$$
A \times B=\{(a, b) \mid a \in A \text { and } b \in B\}
$$

Ordered pairs means the ordering is important, e.g. $(1,2) \neq(2,1)$
e.g. Let A be the set of letters, i.e. $\{a, b, c, \ldots, x, y, z\}$.

Let B be the set of digits, i.e. $\{0,1, \ldots, 9\}$.
AxA is just the set of strings with two letters.
$B x B$ is just the set of strings with two digits.
AxB is the set of strings where the first character is a letter and the second character is a digit.

Cartesian Products

The definition can be generalized to any number of sets, e.g.
$A \times B \times C=\{(a, b, c) \mid a \in A$ and $b \in B$ and $c \in C\}$

Using the above examples, $A x A x A$ is the set of strings with three letters.
Our ID card number has one letter and then six digits, so the set of ID card numbers is the set AxBxBxBxBxBxB .

Fact: If $|A|=n$ and $|B|=m$, then $|A x B|=n m$.

Fact: If $|\mathrm{A}|=\mathrm{n}$ and $|\mathrm{B}|=\mathrm{m}$ and $|\mathrm{C}|=\mathrm{I}$, then $|\mathrm{AxBxC}|=\mathrm{nml}$.

Fact: $\left|A_{1} x A_{2} x \ldots x A_{k}\right|=\left|A_{1}\right| x\left|A_{2}\right| x \ldots x\left|A_{k}\right|$.

Application \& Scope of research

Database system
\square Fuzzy system
\square Automata theory

