

Tautology

Introduction: PL?

- Propositional Logic (PL) = Propositional Calculus = Sentential Logic
- In Propositional Logic, the objects are called propositions
- Definition: A proposition is a <u>statement</u> that is either <u>true</u> or <u>false</u>, but not both
- We usually denote a proposition by a letter: p, q, r, s, ...

1.1 Propositions

- Logic allows consistent mathematical reasoning.
- Many applications in CS: construction and verification computer programs,

Proposition: A statement that is either true (T) or false (F).

<u>example</u>: Toronto is the capital of Canada in 2003 (F). 1+1=2 (T).

<u>counter-example</u>: I love this class.

Let "P" be a proposition. Then $\neg P$ ("NOT P") is another one stating that: It is not the case that "P".

Introduction to Tautologies, contradictions

DEF: A compound proposition is called a *tautology* if no matter what truth values its atomic propositions have, its own truth value is **T**.

EG: $p \lor \neg p$ (Law of excluded middle)

The opposite to a tautology, is a compound proposition that's always false –a *contradiction*.

EG: $p \land \neg p$

On the other hand, a compound proposition whose truth value isn't constant is called a *contingency.*

EG: $p \rightarrow \neg p$

Tautologies and contradictions

The easiest way to see if a compound proposition is a tautology/contradiction is to use a truth table.

Tautology example (1.2.8.a) Part 1

Demonstrate that $[\neg p \land (p \lor q)] \rightarrow q$ is a tautology in two ways: 1. Using a truth table – show that $[\neg p \land (p \lor q)] \rightarrow q$ is always true 2. Using a proof (will get to this later).

р	q	$\neg p$	$p \lor q$	$ eg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \rightarrow q$
Т	Т				
Т	F				
F	Т				
F	F				

р	q	$\neg p$	$p \lor q$	$ eg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \rightarrow q$
Т	Т	F			
Т	F	F			
F	Т	Т			
F	F	Т			

р	q	$\neg p$	$p \lor q$	$ eg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \rightarrow q$
Т	Т	F	Т		
Т	F	F	Т		
F	Т	Т	Т		
F	F	Т	F		

р	q	$\neg p$	$p \lor q$	$ eg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \rightarrow q$
Т	Т	F	Т	F	
Т	F	F	Т	F	
F	Т	Т	Т	Т	
F	F	Т	F	F	

р	q	$\neg p$	$p \lor q$	$ eg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \rightarrow q$
Т	Т	F	Т	F	Т
Т	F	F	Т	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	F	F	Т

Application & Scope of research of Tautology

Circuit-SAT