DISCRETE STRUCTURE

TOPICS COVERED

- Function Composition
- Inverse Functions

Def 1: The function $1_A : A \to A$, defined by $1_A(a) = a$ for all $a \in A$, is called the identity function for A.

Def. 2: If $f, g : A \to B$, we say that f and g are equal and write f = g, if f(a) = g(a) for all $a \in A$.

Ex. 1 Let $f : \mathbb{Z} \to \mathbb{Z}$, $g : \mathbb{Z} \to \mathbb{Q}$ where $f(x) = x = g(x) \ \forall x \in \mathbb{Z}$. Yet, $f \neq g! f$ is a one - to - one correspond ence, whereas g is one - to - one but not onto.

Ex. 2 $f, g : \mathbb{R} \to \mathbb{Z}$ defined as follows : $f(x) = \begin{cases} x, & \text{if } x \in \mathbb{Z} \\ \lfloor x \rfloor + 1, & \text{if } x \in \mathbb{R} - \mathbb{Z} \end{cases} g(x) = \lfloor x \rceil, \text{ for all } x \in \mathbb{R}, \text{ then } f = g.$

Def.: If $f : A \to B$ and $g : B \to C$, we define the composite function, which is denoted $g \circ f : A \to C$, by $(g \circ f)(a) = g(f(a))$, for each $a \in A$.

Ex. 1

Ex. 1: Let $f, g: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2, g(x) = x + 5$. Then $g \circ f(x) = g(x^2) = x^2 + 5$, whereas $f \circ g(x) = f(x + 5) = (x + 5)^2$. Therefore, the composition n is not commutative.

Theorem Let $f : A \to B$ and $g : B \to C$ (a) If f, g are one - to - one, then $g \circ f$ is one to one. (b) If f, g are onto, then $g \circ f$ is onto.

Ex. Let
$$f, g, h : \mathbb{R} \to \mathbb{R}$$
 where $f(x) = x^2, g(x) = x + 5, h(x) = \sqrt{x^2 + 2}$. Then $((h \circ g) \circ f)(x) = hg(x^2) = h(x^2 + 5) = \sqrt{(x^2 + 5)^2 + 2} = (h \circ (g \circ f))(x) = h(g(f(x)))$

Theorem If $f : A \to B, g : B \to C, h : C \to D$, then $(h \circ g) \circ f = h \circ (g \circ f)$.

Def. If $f : A \rightarrow A$, we define $f^{1} = f$, and for $n \in \mathbb{Z}^{+}$, $f^{n+1} = f \circ (f^{n})$.

Ex. $A = \{1,2,3,4\}, \quad f : A \to A \text{ defined by } f = \{(1,2), (2,2), (3,1), (4,3)\}.$ Then $f^2 = f \circ f = \{(1,2), (2,2), (3,2), (4,1)\},$ $f^3 = \{(1,2), (2,2), (3,2), (4,2)\} = f^n, n \ge 3$

Def. If $f : A \to B$, then f is said to be *invertible* if there is a function $g : B \to A$ such that $g \circ f = 1_A$ and $f \circ g = 1_{B_1}$

Ex.
$$f, g: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 2x + 5$, $g(x) = \frac{1}{2}(x - 5)$. Then
 $gf(x) = g(2x + 5) = \frac{1}{2}(2x + 5 - 5) = x$ and $fg(x) = f(\frac{1}{2}(x - 5))$
 $= 2[\frac{1}{2}(x - 5)] + 5 = x$. f and g are both invertible functions

Theorem .invertible function of $f : A \to B$ is unique. Proof : If $h : B \to A$ is also inverse of f, then $h \circ f = 1_A$ and $f \circ h = 1_B$. Consequent ly, $h = h \circ 1_B = h \circ (f \circ g) = (h \circ f) \circ g = 1_A \circ g = g$. (Since it is unique, we use f^{-1} to represent the inverse of f.)

Theorem A function $f : A \rightarrow B$ is invertible if and only if it is one - to - one and onto.

Theorem If $f : A \to B, g : B \to C$ are invertible functions, then $g \circ f : A \to C$ is invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

How to find the inverse of a function?
Ex.
$$f : \mathbb{R} \to \mathbb{R} = \{(x, y) \mid y = mx + b\}$$

 $f^{-1} = \{(x, y) \mid y = mx + b\}^{c} = \{(y, x) \mid y = mx + b\} = \{(x, y) \mid x = my + b\}$
 $= \{(x, y) \mid y = \frac{1}{m}(x - b)\} \therefore f^{-1}(x) = \frac{1}{m}(x - b)$

Ex. f : R \rightarrow R⁺, f(x) = e^x. f is one - to - one and onto. f⁻¹ = {(x, y) | y = e^x}^c = {(y, x) | y = e^x} = {(x, y) | x = e^y} = {(x, y) | y = ln x}. \therefore f⁻¹(x) = ln x.

Theorem Let $f : A \rightarrow B$ for finite sets A and B, where | $A \models B$ |. Then the following statements are equivalent : (a) f is one - to - one (b) f is onto (c) f is invertible.

Application & Scope of research

Composition of Functions : Word Problems using Composition