DISCRETE STRUCTURE

LECTURE-2

COMPOSITION OF FUNCTION AND RELATION

TOPICS COVERED

- Function Composition
- Inverse Functions

Function Composition and Inverse Functions

Inverse of addition: u and $-u$
Inverse of multiplication: u and $1 / u$
Def :If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, then f is said to be bijective, or to be a one-to-one correspondence, if f is both one-to-one and onto.
must be $|\mathrm{A}|=|\mathrm{B}|$
(if $\infty={ }^{2}$
but could be
$A \subseteq B$ or $B \subseteq A$

Function Composition and Inverse Functions

Def 1:The function $1_{A}: A \rightarrow A$, defined by $1_{A}(a)=a$
for all $a \in A$, is called the identity function for A.

Def. 2: If $f, g: A \rightarrow B$, we say that f and g are equal and write $f=g$, if $f(a)=g(a)$ for all $a \in A$.

Ex. 1 Let $f: \mathrm{Z} \rightarrow \mathrm{Z}, g: \mathrm{Z} \rightarrow \mathrm{Q}$ where $f(x)=x=g(x) \forall x \in \mathrm{Z}$. Yet, $f \neq g!f$ is a one - to - one correspond ence, whereas g is one - to - one but not onto.

Ex. $2 f, g: \mathrm{R} \rightarrow \mathrm{Z}$ defined as follows :
$f(x)=\left\{\begin{array}{c}x, \text { if } x \in Z \\ \lfloor x\rfloor+1, \text { if } x \in R-Z\end{array} g(x)=\lceil x\rceil\right.$, for all $x \in \mathrm{R}$, then $f=g$.

Function Composition and Inverse Functions

Def.: If $f: A \rightarrow B$ and $g: B \rightarrow C$, we define the composite function, which is denoted $g \circ f: A \rightarrow C$, by $(g \circ f)(a)=g(f(a))$, for each $a \in A$.

Ex. 1

$$
(g \circ f)(1)=g(f(1))=g(a)=x, g f(2)=x, g f(3)=y, g f(4)=\mathrm{z}
$$

Function Composition and Inverse Functions

Ex. 1: Let $f, g: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $f(x)=x^{2}, g(x)=x+5$.
Then $g \circ f(x)=g\left(x^{2}\right)=x^{2}+5$, whereas $f \circ g(x)=f(x+5)=$ $(x+5)^{2}$. Therefore, the compositio n is not commutativ e .

Theorem Let $f: A \rightarrow B$ and $g: B \rightarrow C$
(a) If f, g are one - to - one, then $g \circ f$ is one to one.
(b) If f, g are onto, then $g \circ f$ is onto.

Function Composition and Inverse Functions

Ex. Let $f, g, h: \mathrm{R} \rightarrow \mathrm{R}$ where $f(x)=x^{2}, g(x)=x+5, h(x)=$ $\sqrt{x^{2}+2}$. Then $((h \circ g) \circ f)(x)=h g\left(x^{2}\right)=h\left(x^{2}+5\right)=$ $\sqrt{\left(x^{2}+5\right)^{2}+2}=(h \circ(g \circ f))(x)=h(g(f(x)))$

Theorem If $f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D$, then $(h \circ g) \circ f=$ $h \circ(g \circ f)$.

Function Composition and Inverse Functions

Def. If $f: A \rightarrow A$, we define $f^{1}=f$, and for $n \in \mathrm{Z}^{+}$, $f^{n+1}=f \circ\left(f^{n}\right)$.

Ex. $\quad A=\{1,2,3,4\}, \quad f: A \rightarrow A$ defined \quad by $f=\{(1,2), \quad(2,2)$, $(3,1),(4,3)\}$. Then $f^{2}=f \circ f=\{(1,2),(2,2),(3,2),(4,1)\}$, $f^{3}=\{(1,2),(2,2),(3,2),(4,2)\}=f^{n}, n \geq 3$

Def. If $f: A \rightarrow B$, then f is said to be invertible if there is a function $\quad g: B \rightarrow A$ such that $\quad g \circ f=1_{A}$ and $f \circ g=1_{B}$.

Function Composition and Inverse Functions

Ex. $f, g: \mathrm{R} \rightarrow \mathrm{R}, f(x)=2 x+5, g(x)=\frac{1}{2}(x-5)$. Then $g f(x)=g(2 x+5)=\frac{1}{2}(2 x+5-5)=x$ and $f g(x)=f\left(\frac{1}{2}(x-5)\right)$
$=2\left[\frac{1}{2}(x-5)\right]+5=x . f$ and g are both invertible functions

Theorem . invertible function of $f: A \rightarrow B$ is unique.
Proof : If $h: B \rightarrow A$ is also inverse of f, then $h \circ f=1_{A}$ and $f \circ h=1_{B}$. Consequent ly, $h=h \circ 1_{B}=h \circ(f \circ g)=(h \circ f) \circ g=$ $1_{A} \circ g=g$.
(Since it is unique, we use f^{-1} to represent the inverse of f.)

Function Composition and Inverse Functions

Theorem A function $f: A \rightarrow B$ is invertible if and only if it is one - to - one and onto.

Theorem If $f: A \rightarrow B, g: B \rightarrow C$ are invertible functions, then $g \circ f: A \rightarrow C$ is invertible and $(\mathrm{g} \circ \mathrm{f})^{-1}=f^{-1} \circ g^{-1}$.

How to find the inverse of a function?
Ex. $f: \mathrm{R} \rightarrow \mathrm{R}=\{(x, y) \mid y=m x+b\}$
$f^{-1}=\{(x, y) \mid y=m x+b\}^{c}=\{(y, x) \mid y=m x+b\}=\{(x, y) \mid x=m y+b\}$
$=\left\{(x, y) \left\lvert\, y=\frac{1}{m}(x-b)\right.\right\} . \therefore f^{-1}(x)=\frac{1}{m}(x-b)$

Function Composition and Inverse Functions

Ex.f: $\mathrm{R} \rightarrow \mathrm{R}^{+}, \mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$. f is one-to-one and onto.
$\mathrm{f}^{-1}=\left\{(x, y) \mid y=e^{x}\right\}^{c}=\left\{(y, x) \mid y=e^{x}\right\}=\left\{(x, y) \mid x=e^{y}\right\}$
$=\{(x, y) \mid y=\ln x\} . \therefore f^{-1}(x)=\ln x$.

Theorem Let $f: A \rightarrow B$ for finite sets A and B, where
$|A|=|B|$. Then the following statements are equivalent:
(a) f is one - to - one
(b) f is onto
(c) f is invertible.

Application \& Scope of research

Composition of Functions : Word Problems using Composition

