
DATA STRUCTURES USING ‘C’

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

2

Paths and cycles

• A path is a sequence of nodes
v1, v2, …, vN such that (vi,vi+1)E for 0<i<N

– The length of the path is N-1.
– Simple path: all vi are distinct, 0<i<N

• A cycle is a path such that v1=vN
– An acyclic graph has no cycles

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

3

Cycles

PIT

BOS

JFK

DTW

LAX

SFO

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

4

More useful definitions

• In a directed graph:

• The indegree of a node v is the number of
distinct edges (w,v)E.

• The outdegree of a node v is the number of
distinct edges (v,w)E.

• A node with indegree 0 is a root.

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

5

Trees are graphs

• A dag is a directed acyclic graph.

• A tree is a connected acyclic undirected
graph.

• A forest is an acyclic undirected graph (not
necessarily connected), i.e., each connected
component is a tree.

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

6

Example DAG

Watch
Socks

Shoes

Undershorts

Pants

Belt Tie

Shirt

Jacket

a DAG implies an
ordering on events

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

7

Example DAG

Watch
Socks

Shoes

Undershorts

Pants

Belt Tie

Shirt

Jacket

In a complex DAG, it
can be hard to find a
schedule that obeys
all the constraints.

Topological Sort

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

9

Topological Sort

• For a directed acyclic graph G = (V,E)
• A topological sort is an ordering of all of G’s

vertices v1, v2, …, vn such that...

Formally: for every edge (vi,vk) in E, i<k.
Visually: all arrows are pointing to the right

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

10

Topological sort

• There are often many possible topological
sorts of a given DAG

• Topological orders for this DAG :

• 1,2,5,4,3,6,7
• 2,1,5,4,7,3,6
• 2,5,1,4,7,3,6
• Etc.

• Each topological order is a feasible schedule.

1

4

76

3 5

2

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

11

Topological Sorts for Cyclic
Graphs?

Impossible!
1 2

3

• If v and w are two vertices on a cycle, there
exist paths from v to w and from w to v.
• Any ordering will contradict one of these paths

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

12

Topological sort algorithm

• Algorithm
– Assume indegree is stored with each node.
– Repeat until no nodes remain:

• Choose a root and output it.
• Remove the root and all its edges.

• Performance
– O(V2 + E), if linear search is used to find a root.

Graph Traversals

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

14

Graph Traversals

•Both take time: O(V+E)

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

15

Use of a stack

• It is very common to use a stack to keep track
of:
– nodes to be visited next, or
– nodes that we have already visited.

• Typically, use of a stack leads to a depth-first
visit order.

• Depth-first visit order is “aggressive” in the
sense that it examines complete paths.

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

16

Topological Sort as DFS

• do a DFS of graph G
• as each vertex v is “finished” (all of it’s

children processed), insert it onto the front of
a linked list

• return the linked list of vertices

• why is this correct?

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

17

Use of a queue

• It is very common to use a queue to keep
track of:
– nodes to be visited next, or
– nodes that we have already visited.

• Typically, use of a queue leads to a breadth-
first visit order.

• Breadth-first visit order is “cautious” in the
sense that it examines every path of length i
before going on to paths of length i+1.

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

18

Graph Searching ???

• Graph as state space (node = state, edge = action)
• For example, game trees, mazes, ...
• BFS and DFS each search the state space for a best

move. If the search is exhaustive they will find the
same solution, but if there is a time limit and the
search space is large...

• DFS explores a few possible moves, looking at the
effects far in the future

• BFS explores many solutions but only sees effects in
the near future (often finds shorter solutions)

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

19

Minimum Spanning Trees

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

20

Problem: Laying Telephone Wire

Central office

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

21

Wiring: Naïve Approach

Central office

Expensive!

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

22

Wiring: Better Approach

Central office

Minimize the total length of wire connecting the customers

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

23

Minimum Spanning Tree (MST)
(see Weiss, Section 24.2.2)

• it is a tree (i.e., it is acyclic)
• it covers all the vertices V

– contains |V| - 1 edges

• the total cost associated with tree edges is the
minimum among all possible spanning trees

• not necessarily unique

A minimum spanning tree is a subgraph of an
undirected weighted graph G, such that

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

24

Applications of MST
• Any time you want to visit all vertices in a graph at

minimum cost (e.g., wire routing on printed circuit
boards, sewer pipe layout, road planning…)

• Internet content distribution
– $$$, also a hot research topic
– Idea: publisher produces web pages, content distribution

network replicates web pages to many locations so consumers
can access at higher speed

– MST may not be good enough!
• content distribution on minimum cost tree may take a long time!

• Provides a heuristic for traveling salesman problems.
The optimum traveling salesman tour is at most twice
the length of the minimum spanning tree (why??)

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

25

How Can We Generate a MST?

a

c
e

d

b
2

45

9
6

4

5

5

a

c
e

d

b
2

45

9
6

4

5

5

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

26

Prim’s Algorithm

Initialization
a. Pick a vertex r to be the root
b. Set D(r) = 0, parent(r) = null
c. For all vertices v  V, v  r, set D(v) = 
d. Insert all vertices into priority queue P,

using distances as the keys

a

c
e

d

b
2

45

9
6

4

5

5
e a b c d
0    

Vertex Parent
e -

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

27

Prim’s Algorithm
While P is not empty:

1. Select the next vertex u to add to the tree
u = P.deleteMin()

2. Update the weight of each vertex w adjacent to
u which is not in the tree (i.e., w  P)

If weight(u,w) < D(w),
a. parent(w) = u
b. D(w) = weight(u,w)
c. Update the priority queue to reflect

new distance for w

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

28

Prim’s algorithm

a

c
e

d

b
2

45

9
6

4

5

5

d b c a
4 5 5 

Vertex Parent
e -
b e
c e
d e

The MST initially consists of the vertex e, and we update
the distances and parent for its adjacent vertices

Vertex Parent
e -
b -
c -
d -

d b c a
   

e
0

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

29

Prim’s algorithm

a

c
e

d

b
2

45

9
6

4

5

5

a c b
2 4 5

Vertex Parent
e -
b e
c d
d e
a d

d b c a
4 5 5 

Vertex Parent
e -
b e
c e
d e

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

30

Prim’s algorithm

a

c
e

d

b
2

45

9
6

4

5

5

c b
4 5

Vertex Parent
e -
b e
c d
d e
a d

a c b
2 4 5

Vertex Parent
e -
b e
c d
d e
a d

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

31

Prim’s algorithm

a

c
e

d

b
2

45

9
6

4

5

5

b
5

Vertex Parent
e -
b e
c d
d e
a d

c b
4 5

Vertex Parent
e -
b e
c d
d e
a d

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

32

Prim’s algorithm

Vertex Parent
e -
b e
c d
d e
a d

a

c
e

d

b
2

45

9
6

4

5

5

The final minimum spanning tree

b
5

Vertex Parent
e -
b e
c d
d e
a d

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

33

Running time of Prim’s algorithm
(without heaps)

Initialization of priority queue (array): O(|V|)

Update loop: |V| calls
• Choosing vertex with minimum cost edge: O(|V|)
• Updating distance values of unconnected

vertices: each edge is considered only once
during entire execution, for a total of O(|E|)
updates

Overall cost without heaps:

When heaps are used, apply same analysis as for
Dijkstra’s algorithm (p.469) (good exercise)

O(|E| + |V| 2)

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

34

Prim’s Algorithm Invariant

• At each step, we add the edge (u,v) s.t. the
weight of (u,v) is minimum among all edges
where u is in the tree and v is not in the tree

• Each step maintains a minimum spanning tree of
the vertices that have been included thus far

• When all vertices have been included, we have a
MST for the graph!

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

35

Correctness of Prim’s
• This algorithm adds n-1 edges without creating a

cycle, so clearly it creates a spanning tree of any
connected graph (you should be able to prove this).

But is this a minimum spanning tree?
Suppose it wasn't.

• There must be point at which it fails, and in particular
there must a single edge whose insertion first
prevented the spanning tree from being a minimum
spanning tree.

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

36

Correctness of Prim’s

• Let V' be the vertices incident with edges in S
• Let T be a MST of G containing all edges in S, but not (x,y).

• Let G be a connected,
undirected graph

• Let S be the set of
edges chosen by Prim’s
algorithm before
choosing an errorful
edge (x,y)

x
y

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

37

Correctness of Prim’s

x
y

v
w

• There is exactly one edge on this cycle with exactly
one vertex in V’, call this edge (v,w)

• Edge (x,y) is not in T, so
there must be a path in
T from x to y since T is
connected.

• Inserting edge (x,y) into
T will create a cycle

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

38

Correctness of Prim’s

• Since Prim’s chose (x,y) over (v,w), w(v,w) >= w(x,y).
• We could form a new spanning tree T’ by swapping

(x,y) for (v,w) in T (prove this is a spanning tree).
• w(T’) is clearly no greater than w(T)
• But that means T’ is a MST
• And yet it contains all the edges in S, and also (x,y)

...Contradiction

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

39

Another Approach

a

c
e

d

b
2

45

9
6

4

5

5

• Create a forest of trees from the vertices
• Repeatedly merge trees by adding “safe edges”

until only one tree remains
• A “safe edge” is an edge of minimum weight which

does not create a cycle

forest: {a}, {b}, {c}, {d}, {e}

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

40

Kruskal’s algorithm

Initialization
a. Create a set for each vertex v  V
b. Initialize the set of “safe edges” A

comprising the MST to the empty set
c. Sort edges by increasing weight

a

c
e

d

b
2

45

9
6

4

5

5

F = {a}, {b}, {c}, {d}, {e}
A = 
E = {(a,d), (c,d), (d,e), (a,c),

(b,e), (c,e), (b,d), (a,b)}

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

41

Kruskal’s algorithm
For each edge (u,v)  E in increasing order
while more than one set remains:

If u and v, belong to different sets U and V
a. add edge (u,v) to the safe edge set

A = A  {(u,v)}
b. merge the sets U and V

F = F - U - V + (U  V)

Return A

• Running time bounded by sorting (or findMin)
• O(|E|log|E|), or equivalently, O(|E|log|V|) (why???)

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

42

Kruskal’s algorithm

E = {(a,d), (c,d), (d,e), (a,c),
(b,e), (c,e), (b,d), (a,b)}

Forest
{a}, {b}, {c}, {d}, {e}
{a,d}, {b}, {c}, {e}
{a,d,c}, {b}, {e}
{a,d,c,e}, {b}
{a,d,c,e,b}

A

{(a,d)}
{(a,d), (c,d)}
{(a,d), (c,d), (d,e)}
{(a,d), (c,d), (d,e), (b,e)}

a

c
e

d

b
2

45

9
6

4

5

5

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

43

• After each iteration, every tree in the forest is a MST
of the vertices it connects

• Algorithm terminates when all vertices are connected
into one tree

Kruskal’s Algorithm Invariant

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

44

Correctness of Kruskal’s
• This algorithm adds n-1 edges without creating a

cycle, so clearly it creates a spanning tree of any
connected graph (you should be able to prove this).

But is this a minimum spanning tree?
Suppose it wasn't.

• There must be point at which it fails, and in particular
there must a single edge whose insertion first
prevented the spanning tree from being a minimum
spanning tree.

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

45

Correctness of Kruskal’s

• Let e be this first errorful edge.
• Let K be the Kruskal spanning tree
• Let S be the set of edges chosen by Kruskal’s algorithm

before choosing e
• Let T be a MST containing all edges in S, but not e.

K T
S

e

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

46

Correctness of Kruskal’s

Proof (by contradiction):
• Assume there exists some

edge e’ in T - S, w(e’) <
w(e)

• Kruskal’s must have
considered e’ before e

K T
S

e

Lemma: w(e’) >= w(e) for all edges e’ in T - S

• However, since e’ is not in K (why??), it must have
been discarded because it caused a cycle with some of
the other edges in S.

• But e’ + S is a subgraph of T, which means it cannot
form a cycle ...Contradiction

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

47

Correctness of Kruskal’s

• Inserting edge e into T will create a cycle
• There must be an edge on this cycle which is not in K

(why??). Call this edge e’
• e’ must be in T - S, so (by our lemma) w(e’) >= w(e)
• We could form a new spanning tree T’ by swapping e

for e’ in T (prove this is a spanning tree).
• w(T’) is clearly no greater than w(T)
• But that means T’ is a MST
• And yet it contains all the edges in S, and also e

...Contradiction

15-211: Fundamental Data
Structures and Algorithms

Rose Hoberman
April 8, 2003

48

Greedy Approach

• Like Dijkstra’s algorithm, both Prim’s and Kruskal’s
algorithms are greedy algorithms

• The greedy approach works for the MST problem;
however, it does not work for many other
problems!

That’s All!

