
DATA STRUCTURES USING ‘C’





 Array
◦ Unordered
 Add, delete, search
◦ Ordered

 Linked List
◦ ??



 Fundamental data storage structures used in 
programming.

 Combines advantages of an ordered array 
and a linked list.

 Searching as fast as in ordered array. 
 Insertion and deletion as fast as in linked list.



node

Draw a parse tree



 Consists of nodes connected by edges.
 Nodes often represent entities (complex 

objects) such as people, car parts etc.
 Edges between the nodes represent the way 

the nodes are related.
 Its easy for a program to get from one node 

to another if there is a line connecting them.
 The only way to get from node to node is to 

follow a path along the edges.



 Path: Traversal from node to node along the edges 
results in a sequence called path.

 Root: Node at the top of the tree.
 Parent: Any node, except root has exactly one edge 

running upward to another node. The node above it 
is called parent.

 Child: Any node may have one or more lines 
running downward to other nodes. Nodes below are 
children.

 Leaf: A node that has no children.
 Subtree: Any node can be considered to be the root 

of a subtree, which consists of its children and its 
children’s children and so on.



 Visiting: A node is visited when program 
control arrives at the node, usually for 
processing.

 Traversing: To traverse a tree means to visit 
all the nodes in some specified order.

 Levels: The level of a particular node refers to 
how many generations the node is from the 
root. Root is assumed to be level 0.

 Keys: Key value is used to search for the item 
or perform other operations on it.





 Every node in a binary 
tree can have at most two 
children.

 The two children of each 
node are called the left 
child  and right child 
corresponding to their 
positions.

 A node can have only a 
left child or only a right 
child or it can have no 
children at all.

 Left child is always less 
that its parent, while 
right child is greater than 
its parent.



 ..\FinalApplets\Chap08\Tree\Tree.html



 Some trees can be unbalanced.
 They have most of their nodes on one side of 

the root or the other. Individual subtrees may 
also be unbalanced.

 Trees become unbalanced because of the 
order in which the data items are inserted.

 If the key values are inserted in ascending or 
descending order the tree will be unbalanced.

 For search-centric application (Binary tree), 
an unbalanced tree must be re-balanced.



What are tree behaviors? 
Do they look familiar to 
other DS?
 Implantation details?
Draw UML diagram for a B-
Tree?



 Similar to Linked List but with 2 Links
◦ Store the nodes at unrelated locations in memory 

and connect them using references in each node 
that point to its children.

 Can also be represented as an array, with 
nodes in specific positions stored in 
corresponding positions in the array.
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 Visiting each node in a specified 
order.

 Three simple ways to traverse a 
tree:
◦ Inorder
◦ Preorder
◦ Postorder



Inorder traversal will cause all the nodes to be visited 
in ascending order.

 Steps involved in Inorder traversal (recursion) are:
1. -- Call itself to traverse the node’s left subtree
2. -- Visit the node (e.g. display a key)
3. -- Call itself to traverse the node’s right subtree.

inOrder( node lroot) 
{

If (lroot != null) {
inOrder(lroot.leftChild());
System.out.print(lroot.iData + “  “);
inOrder(lroot.rightChild());

}



 Sequence of preorder traversal: e.g. use for 
infix parse tree to generate prefix
-- Visit the node
-- Call itself to traverse the node’s left subtree
-- Call itself to traverse the node’s right subtree

 Sequence of postorder traversal: e.g. use for 
infix parse tree to generate postfix
-- Call itself to traverse the node’s left subtree
-- Call itself to traverse the node’s right subtree
-- Visit the node.



 To find a node given its key value, start from 
the root. 

 If the key value is same as the node, then 
node is found.

 If key is greater than node, search the right 
subtree, else search the left subtree.

 Continue till the node is found or the entire 
tree is traversed.

 Time required to find a node depends on how 
many levels down it is situated, i.e. O(log N).



 To insert a node we must first find the place 
to insert it.

 Follow the path from the root to the 
appropriate node, which will be the parent of 
the new node.

 When this parent is found, the new node  is 
connected as its left or right child, depending 
on whether the new node’s key is less or 
greater than that of the parent.

 What is the complexity?



 For the minimum, 
◦ go to the left child of the root and keep going to 

the left child until you come to a leaf node. This 
node is the minimum.

 For the maximum, 
◦ go to the right child of the root and keep going to 

the right child until you come to a leaf node. This 
node is the maximum.



 Start by finding the node you want to delete.
 Then there are three cases to consider:

1. The node to be deleted is a leaf
2. The node to be deleted has one child
3. The node to be deleted has two children



 To delete a leaf node, simply change the 
appropriate child field in the node’s parent to 
point to null, instead of to the node.

 The node still exists, but is no longer a part 
of the tree.

 Because of Java’s garbage collection feature, 
the node need not be deleted explicitly.



 The node to be deleted in this case has only 
two connections: to its parent and to its only 
child.

 Connect the child of the node to the node’s 
parent, thus cutting off the connection 
between the node and its child, and between 
the node and its parent.





 To delete a node with two children, replace the 
node with its inorder successor.

 For each node, the node with the next-highest key 
(to the deleted node) in the subtree is called its 
inorder successor.

 To find the successor, 
◦ start with the original (deleted) node’s right child. 
◦ Then go to this node’s left child and then to its left child 

and so on, following down the path of left children. 
◦ The last left child in this path is the successor of the 

original node.











 If the right child of the original node has no 
left child, this right child is itself the 
successor.

 The successor can be the right child or it can 
be one of this right child’s descendants.

 If the node to be deleted is the root, set the 
root to the successor.

 Else the node can be either a right child or a 
left child. In this case set the appropriate field 
in its parent to point to the successor.

 After this set the left child of the successor to 
point to the node’s left child.



 If successor is a left descendent of the right 
child of the node to be deleted, perform the 
following steps:

-- Plug the right child of the successor into the 
left child of the successor’s parent.

-- Plug the right child of the node to be 
deleted into the right child of the successor.

-- Unplug the node from the right child of its 
parent and set this field to point to the 
successor.

-- Unplug the node’s left child and plug it into 
the left child of the successor.





 Assume number of nodes N and number of 
levels L.

 N = 2L -1
 N+1 = 2L

 L = log(N+1)
 The time needed to carry out the common 

tree operations is proportional to the base 2 
log of N

 O(log N) time is required for these 
operations.



 Binary tree is used to compress data.
 Data compression is used in many situations. E.g. 

sending data over internet.
 Character Code: Each character in a normal 

uncompressed text file is represented in the 
computer by one byte or by two bytes.

 For text, the most common approach is to reduce 
the number of bits that represent the most-used 
characters.

 E.g. E is the most common letter, so few bits can 
be used to encode it.

 No code can be the prefix of any other code.
 No space characters in binary message, only 0s and 

1s.



 Huffman tree is kind of binary tree, used for 
decoding character codes.

 The characters in the message appear in the 
tree as leaf nodes. The higher their frequency 
in the message, the higher up they appear in 
the tree.

 The number outside each node is the 
frequency.

 The numbers outside non-leaf nodes are the 
sums of the frequencies of their children.



 For each character start at the root.
 If we see a 0 bit, go left to the next node, and 

if we see a 1 bit, then go right.



 Make a Node object for each character used in the 
message.

 Each node has two data items: the character and 
that character’s frequency in the message.

 Make a tree object for each of these nodes.
 The node becomes the root of the tree.
 Insert these trees in a priority queue.
 They are ordered by frequency, with the smallest 

frequency having the highest priority.
 Remove two trees from the priority queue, and 

make them into children of a new node.
 The new node has frequency that is the sum of the 

children’s frequencies.
 Insert this new three-node tree back into the 

priority queue.
 Keep repeating these two steps, till only one tree is 

left in the queue.



 Create a code table listing the Huffman code 
alongside each character.

 The index of each cell would be the numerical 
value of the character.

 The contents of the cell would be the 
Huffman code for the corresponding 
character.

 For each character in the original message, 
use its code as an index into the code table.

 Then repeatedly append the Huffman code to 
the end of the coded message until its 
complete.



 The process is like decoding a message. 
 Start at the root of the Huffman tree and 

follow every possible path to a leaf node.
 As we go along the path, remember the 

sequence of left and right choices, regarding 
a 0 for a left edge and a 1 for a right edge.

 When we arrive at the leaf node for a 
character, the sequence of 0s and 1s is the 
Huffman code for that character.

 Put this code into the code table at the 
appropriate index number.


