ATASTRUCTURES USING ‘C’

What Is a graph?

A data structure that consists of a set of nodes

(vertices) and a set of edges that relate the nodes
to each other

The set of edges describes relationships among the

vertices

Washington

\\
/

Houston

Atlanta

Formal definition of graphs

A graph G is defined as follows:
G=(V,E)
V(G): a finite, nonempty set of vertices
E(G): a set of edges (pairs of vertices)

Directed vs. undirected graphs

When the edges In a graph have no
direction, the graph Is called undirected

ected graph.

V(Graphl) ={A,B,C,D}
E(Graphl) = { (A, B), (A, D), (B, C), (B, D) }

Directed vs. undirected graphs
(cont.)

When the edges In a graph have a direction,
the graph is called directed (or digraph)

(b) Graph2 is a directed graph.

(=—=

Warning: if the graph is
() directed, the order of the
\(2) vertices in each edge is

Important !
V(Graph2)={1,3,5,7,9,11}

E(Graph2) = {(1,3) (3,1) (5,9) (9,11) (5,7)), (9, 9), (11, 1) }

Trees vs graphs

Trees are special cases of graphs!!

(c) Graph3 is a directed graph.

A
/@\ @Q@

@@@

V(Graph3) = B,C,D,E,FG H,ILJ}
E(Graph3) = {(G D), (G J) (D, B), (D, F) (0, H), (I,]), (B, A), (B, C), (E E) }

Graph terminology

Adjacent nodes: two nodes are adjacent If
they are connected by an edge

° @ 5is adjacent to 7
7 is adjacent from 5

Path: a sequence of vertices that connect
two nodes In a graph

Complete graph: a graph in which every
vertex Is directly connected to every other
vertex

Graph terminology (cont.)

What is the number of edges in a complete
directed graph with N vertices?

N * (N-1)
(A O

(a) Complete directed graph.

Graph terminology (cont.)

What is the number of edges in a complete
undirected graph with N vertices?

N * (N-1) / 2

Graph terminology (cont.)

Weighted graph: a graph in which each edge
carries a value

Graph implementation

Array-based implementation
— A 1D array Is used to represent the vertices

— A 2D array (adjacency matrix) is used to
represent the edges

Array-based implementation

graph
.num Vertices 7
.vertices

[0] | "Atlanta

[1] | "Austin

"Chicago

"Dallas

"Denver

"Houston

"Washington"

(2] 31 [4 [51 [6] [7]

(Array positions marked 's' are undefined)

Graph implementation (cont.)

Linked-list implementation

— A 1D array Is used to represent the vertices

— A list 1s used for each vertex v which contains the
vertices which are adjacent from v (adjacency list)

(a)

[8]

— | —»

[[
0 0 allC
Fdoor Pointer
edge nodes _ndexo Weight to next
adjacent vertex
edge node
graph - A ~
"Atlanta "| e4+—(5| 800 | e4+—» 600
"Austin "| e—| 3| 200 | e— 160
"Chicago "| e4—| 4 | 1000
"Dallas "| e—| 1| 200 | &— 900 | &— 4| 780
"Denver "| e4—| 01400 | e4+—> 1000
"Houston "| e4—| 0| 800
"Washington"| e4+——| 0| 600 | e+— 1300

Graph searching

Problem: find a path between two nodes of
the graph (e.g., Austin and Washington)

Methods: Depth-First-Search (DFS) or
Breadth-First-Search (BFS)

Depth-First-Search (DFS)

What 1s the 1dea behind

DFS?

— Travel as far as you can down a path

— Back up as little as possi

nle when you reach a

"dead end" (i.e., next vertex has been "marked"
or there Is no next vertex)

DFS can be implemented efficiently using a

stack

Depth-First-Search (DFS) (cont.)

Set found to false
stack.Push(startVertex)
DO
stack.Pop(vertex)
IF vertex == endVertex
Set found to true
ELSE
Push all adjacent vertices onto stack
WHILE !stack.IsEmpty() AND !found

IF('found)
Write "Path does not exist"

Austin

(initialization)

Pop Aulstin

Houston

Dallas

ngton.)
nngrot
(Austin - 4 = G

Serlieey i —_———— a2nver 7

- -, A

{_Houstor

pop Houston Atlarta pop Atlarta

" Wastingtor)

[j: Austin ::ZI il e —— :
— A & Denwver)~
o s
"_.-' i)

__""'!J::__At larta _-_-_:3'
_}___—'

bl —

{_Houstan)

pop Washington

Breadth-First-Searching (BFS)

What Is the 1dea behind BFS?

— Look at all possible paths at the same depth
pefore you go at a deeper level

— Back up as far as possible when you reach a
"dead end" (i.e., next vertex has been "marked"
or there Is no next vertex)

Breadth-First-Searching (BFS) (cont.)

BFS can be implemented efficiently using a queue

IF('found)

Set found to false)]
Write "Path does not exist"

gueue.Engueue(startVertex)
DO
gueue.Dequeue(vertex)
IF vertex == endVertex
Set found to true
ELSE
Enqueue all adjacent vertices onto queue
WHILE !'queue.IsEmpty() AND !found

Should we mark a vertex when it is engueued or
when it is dequeued ?

Austin

dequeue [allas

Houston

Denver

(initialization)

dequeue Austin

Houston

dequene Houston

Denver

Atlarta

dequeue Chicago

dequeue Atlarta

Denver

Atlara

Dlernver

Denver

Atlanta

Washington

dequeue [enver

Atlarta

Cenver

Atlarta

S T

A
Cricage’

[Alarta)

5

dequeue Denver,

Washington

Washington

Atlanta

I.----""__ N
/ ..____;;_DEJ IE;> -:.L_____‘li"u"as: hirlgtn::_ r'|,'k

(Austin D=

= -‘-'-.

(Chicago)

dequeue Washington Washington

else {
if('graph.IsMarked(vertex)) {
graph.MarkVertex(vertex);
graph.GetToVertices(vertex, vertexQ);

while(!vertxQ.IsEmpty()) {
vertexQ.Dequeue(item);

If('graph.IsMarked(item))
queue.Enqueue(item);

}

}
} while ('queue.IsEmpty() && !found);

If('found)
cout << "Path not found" << endl;

}

Single-source shortest-path problem

There are multiple paths from a source vertex
to a destination vertex

Shortest path: the path whose total weight
(1.e., sum of edge weights) IS minimum
Examples:

— Austin->Houston->Atlanta->Washington:
1560 miles

— Austin->Dallas->Denver->Atlanta->Washington:
2980 miles

Single-source shortest-path problem
(cont.)

Common algorithms: Dijkstra's algorithm,
Bellman-Ford algorithm

BFS can be used to solve the shortest graph
problem when the graph Is weightless or all
the weights are the same

(mark vertices before Enqueue)

