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What Is a graph?

A data structure that consists of a set of nodes

(vertices) and a set of edges that relate the nodes
to each other

The set of edges describes relationships among the

vertices
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Formal definition of graphs

A graph G is defined as follows:
G=(V,E)
V(G): a finite, nonempty set of vertices
E(G): a set of edges (pairs of vertices)




Directed vs. undirected graphs

When the edges In a graph have no
direction, the graph Is called undirected

ected graph.

V(Graphl) ={A,B,C,D}
E(Graphl) = { (A, B), (A, D), (B, C), (B, D) }




Directed vs. undirected graphs
(cont.)

When the edges In a graph have a direction,
the graph is called directed (or digraph)

(b) Graph2 is a directed graph.

(=—=

Warning: if the graph is
() directed, the order of the
\(2) vertices in each edge is

Important !
V(Graph2)={1,3,5,7,9,11}

E(Graph2) = {(1,3) (3,1) (5,9) (9,11) (5,7)), (9, 9), (11, 1) }




Trees vs graphs

Trees are special cases of graphs!!

(c) Graph3 is a directed graph.
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V(Graph3) = B,C,D,E,FG H,ILJ}
E(Graph3) = {(G D), (G J) (D, B), (D, F) (0, H), (I, ]), (B, A), (B, C), (E E) }




Graph terminology

Adjacent nodes: two nodes are adjacent If
they are connected by an edge

° @ 5is adjacent to 7
7 is adjacent from 5

Path: a sequence of vertices that connect
two nodes In a graph

Complete graph: a graph in which every
vertex Is directly connected to every other
vertex




Graph terminology (cont.)

What is the number of edges in a complete
directed graph with N vertices?

N * (N-1)
(A O

(a) Complete directed graph.




Graph terminology (cont.)

What is the number of edges in a complete
undirected graph with N vertices?

N * (N-1) / 2




Graph terminology (cont.)

Weighted graph: a graph in which each edge
carries a value




Graph implementation

Array-based implementation
— A 1D array Is used to represent the vertices

— A 2D array (adjacency matrix) is used to
represent the edges




Array-based implementation

graph
.num Vertices 7
.vertices

[0] | "Atlanta

[1] | "Austin

"Chicago

"Dallas

"Denver

"Houston

"Washington"

(2] 31 [4 [51 [6] [7]

(Array positions marked 's' are undefined)




Graph implementation (cont.)

Linked-list implementation

— A 1D array Is used to represent the vertices

— A list 1s used for each vertex v which contains the
vertices which are adjacent from v (adjacency list)




(a)

[8]

— | —»

[ [
0 0 allC
Fdoor Pointer
edge nodes _ndexo Weight to next
adjacent vertex
edge node
graph - A ~
"Atlanta "| e4+—( 5| 800 | e4+—» 600
"Austin "| e—| 3| 200 | e— 160
"Chicago "| e4—| 4 | 1000
"Dallas "| e—| 1| 200 | &— 900 | &— 4| 780
"Denver "| e4—| 01400 | e4+—> 1000
"Houston "| e4—| 0| 800
"Washington"| e4+——| 0| 600 | e+— 1300




Graph searching

Problem: find a path between two nodes of
the graph (e.g., Austin and Washington)

Methods: Depth-First-Search (DFS) or
Breadth-First-Search (BFS)




Depth-First-Search (DFS)

What 1s the 1dea behind

DFS?

— Travel as far as you can down a path

— Back up as little as possi

nle when you reach a

"dead end" (i.e., next vertex has been "marked"
or there Is no next vertex)

DFS can be implemented efficiently using a

stack




Depth-First-Search (DFS) (cont.)

Set found to false
stack.Push(startVertex)
DO
stack.Pop(vertex)
IF vertex == endVertex
Set found to true
ELSE
Push all adjacent vertices onto stack
WHILE !stack.IsEmpty() AND !found

IF('found)
Write "Path does not exist"




Austin

(initialization)

Pop  Aulstin

Houston

Dallas




ngton. )
nngrot
( Austin - 4 = G

Serlieey i —_———— a2nver 7

- -, A

{_Houstor

pop  Houston Atlarta pop  Atlarta




" Wastingtor)

[j: Austin ::ZI il e —— :
— A & Denwver )~
o s
"_.-' i)

__""'!J::__At larta _-_-_:3'
_}___—'

bl —

{_Houstan )

pop  Washington




Breadth-First-Searching (BFS)

What Is the 1dea behind BFS?

— Look at all possible paths at the same depth
pefore you go at a deeper level

— Back up as far as possible when you reach a
"dead end" (i.e., next vertex has been "marked"
or there Is no next vertex)




Breadth-First-Searching (BFS) (cont.)

BFS can be implemented efficiently using a queue

IF('found)

Set found to false ) ]
Write "Path does not exist"

gueue.Engueue(startVertex)
DO
gueue.Dequeue(vertex)
IF vertex == endVertex
Set found to true
ELSE
Enqueue all adjacent vertices onto queue
WHILE !'queue.IsEmpty() AND !found

Should we mark a vertex when it is engueued or
when it is dequeued ?
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(initialization)
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dequeue Chicago
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else {
if('graph.IsMarked(vertex)) {
graph.MarkVertex(vertex);
graph.GetToVertices(vertex, vertexQ);

while(!vertxQ.IsEmpty()) {
vertexQ.Dequeue(item);

If('graph.IsMarked(item))
queue.Enqueue(item);

}

}
} while ('queue.IsEmpty() && !found);

If('found)
cout << "Path not found" << endl;

}




Single-source shortest-path problem

There are multiple paths from a source vertex
to a destination vertex

Shortest path: the path whose total weight
(1.e., sum of edge weights) IS minimum
Examples:

— Austin->Houston->Atlanta->Washington:
1560 miles

— Austin->Dallas->Denver->Atlanta->Washington:
2980 miles




Single-source shortest-path problem
(cont.)

Common algorithms: Dijkstra's algorithm,
Bellman-Ford algorithm

BFS can be used to solve the shortest graph
problem when the graph Is weightless or all
the weights are the same

(mark vertices before Enqueue)




