
DATA STRUCTURES USING ‘C’

Graphs

What is a graph?
• A data structure that consists of a set of nodes

(vertices) and a set of edges that relate the nodes
to each other

• The set of edges describes relationships among the
vertices

Formal definition of graphs

• A graph G is defined as follows:
G=(V,E)

V(G): a finite, nonempty set of vertices
E(G): a set of edges (pairs of vertices)

Directed vs. undirected graphs

• When the edges in a graph have no
direction, the graph is called undirected

• When the edges in a graph have a direction,
the graph is called directed (or digraph)

Directed vs. undirected graphs
(cont.)

E(Graph2) = {(1,3) (3,1) (5,9) (9,11) (5,7)

Warning: if the graph is
directed, the order of the
vertices in each edge is

important !!

• Trees are special cases of graphs!!

Trees vs graphs

Graph terminology

• Adjacent nodes: two nodes are adjacent if
they are connected by an edge

• Path: a sequence of vertices that connect
two nodes in a graph

• Complete graph: a graph in which every
vertex is directly connected to every other
vertex

5 is adjacent to 7
7 is adjacent from 5

• What is the number of edges in a complete
directed graph with N vertices?

N * (N-1)

Graph terminology (cont.)

2()O N

• What is the number of edges in a complete
undirected graph with N vertices?

N * (N-1) / 2

Graph terminology (cont.)

2()O N

• Weighted graph: a graph in which each edge
carries a value

Graph terminology (cont.)

Graph implementation
• Array-based implementation

– A 1D array is used to represent the vertices
– A 2D array (adjacency matrix) is used to

represent the edges

Array-based implementation

Graph implementation (cont.)
• Linked-list implementation

– A 1D array is used to represent the vertices
– A list is used for each vertex v which contains the

vertices which are adjacent from v (adjacency list)

Linked-list implementation

Graph searching

• Problem: find a path between two nodes of
the graph (e.g., Austin and Washington)

• Methods: Depth-First-Search (DFS) or
Breadth-First-Search (BFS)

Depth-First-Search (DFS)

• What is the idea behind DFS?
– Travel as far as you can down a path
– Back up as little as possible when you reach a

"dead end" (i.e., next vertex has been "marked"
or there is no next vertex)

• DFS can be implemented efficiently using a
stack

Set found to false
stack.Push(startVertex)
DO
stack.Pop(vertex)
IF vertex == endVertex
Set found to true

ELSE
Push all adjacent vertices onto stack

WHILE !stack.IsEmpty() AND !found

IF(!found)
Write "Path does not exist"

Depth-First-Search (DFS) (cont.)

start end

(initialization)

Breadth-First-Searching (BFS)

• What is the idea behind BFS?
– Look at all possible paths at the same depth

before you go at a deeper level
– Back up as far as possible when you reach a

"dead end" (i.e., next vertex has been "marked"
or there is no next vertex)

• BFS can be implemented efficiently using a queue
Set found to false
queue.Enqueue(startVertex)
DO
queue.Dequeue(vertex)
IF vertex == endVertex
Set found to true

ELSE
Enqueue all adjacent vertices onto queue

WHILE !queue.IsEmpty() AND !found

• Should we mark a vertex when it is enqueued or
when it is dequeued ?

Breadth-First-Searching (BFS) (cont.)

IF(!found)
Write "Path does not exist"

start end

(initialization)

next:

else {
if(!graph.IsMarked(vertex)) {
graph.MarkVertex(vertex);
graph.GetToVertices(vertex, vertexQ);

while(!vertxQ.IsEmpty()) {
vertexQ.Dequeue(item);
if(!graph.IsMarked(item))
queue.Enqueue(item);

}
}

}
} while (!queue.IsEmpty() && !found);

if(!found)
cout << "Path not found" << endl;

}

Single-source shortest-path problem

• There are multiple paths from a source vertex
to a destination vertex

• Shortest path: the path whose total weight
(i.e., sum of edge weights) is minimum

• Examples:
– Austin->Houston->Atlanta->Washington:

1560 miles
– Austin->Dallas->Denver->Atlanta->Washington:

2980 miles

• Common algorithms: Dijkstra's algorithm,
Bellman-Ford algorithm

• BFS can be used to solve the shortest graph
problem when the graph is weightlessweightless or all
the weights are the same

(mark vertices before Enqueue)

Single-source shortest-path problem
(cont.)

