
DATA STRUCTURES USING ‘C’

Arrays: pluses and minuses
+ Fast element access.
-- Impossible to resize.

• Many applications require resizing!
• Required size not always immediately available.

Singly Linked Lists
 A singly linked list is a

concrete data structure
consisting of a sequence of
nodes

 Each node stores
 element
 link to the next node

next

elem node

A B C D



Recursive Node Class
public class Node {

// Instance variables:
private Object element;
private Node next;
/** Creates a node with null references to its element and next node. */
public Node() {

this(null, null);
}
/** Creates a node with the given element and next node. */
public Node(Object e, Node n) {

element = e;
next = n;

}
// Accessor methods:
public Object getElement() {

return element;
}
public Node getNext() {

return next;
}
// Modifier methods:
public void setElement(Object newElem) {

element = newElem;
}
public void setNext(Node newNext) {

next = newNext;
}

}

Singly linked list
public class SLinkedList {

protected Node head; // head node of the list
/** Default constructor that creates an empty list */
public SLinkedList() {

head = null;
}
// ... update and search methods would go here ...

}

Inserting at the Head
1. Allocate a new node
2. Insert new element
3. Make new node point

to old head
4. Update head to point

to new node

Removing at the Head

1. Update head to point
to next node in the
list

2. Allow garbage
collector to reclaim
the former first node

Singly linked list with ‘tail’ sentinel
public class SLinkedListWithTail {

protected Node head; // head node of the list
protected Node tail; // tail node of the list
/** Default constructor that creates an empty list */
public SLinkedListWithTail() {

head = null;
tail = null;

}
// ... update and search methods would go here ...

}

Inserting at the Tail
1. Allocate a new

node
2. Insert new element
3. Have new node

point to null
4. Have old last node

point to new node
5. Update tail to point

to new node

Removing at the Tail

 Removing at the tail of
a singly linked list
cannot be efficient!

 There is no constant-
time way to update the
tail to point to the
previous node

Doubly Linked List
 A doubly linked list is often more

convenient!
 Nodes store:

 element
 link to the previous node
 link to the next node

 Special trailer and header nodes

prev next

elem

trailerheader nodes/positions

elements

node

Insertion
 We visualize operation insertAfter(p, X), which returns position q

A B X C

A B C

p

A B C

p

X

q

p q

Insertion Algorithm
Algorithm insertAfter(p,e):

Create a new node v
v.setElement(e)
v.setPrev(p){link v to its predecessor}
v.setNext(p.getNext()) {link v to its successor}
(p.getNext()).setPrev(v) {link p’s old successor to v}
p.setNext(v) {link p to its new successor, v}
return v {the position for the element e}

Deletion
 We visualize remove(p), where p == last()

A B C D

p

A B C

D

p

A B C

Deletion Algorithm
Algorithm remove(p):

t = p.element {a temporary variable to hold the
return value}

(p.getPrev()).setNext(p.getNext()) {linking out p}
(p.getNext()).setPrev(p.getPrev())
p.setPrev(null) {invalidating the position p}
p.setNext(null)
return t

Worst-cast running time
 In a doubly linked list

+ insertion at head or tail is in O(1)
+ deletion at either end is on O(1)
-- element access is still in O(n)

