ATASTRUCTURES USING ‘C’

Pointers

/\
Pointers an?l Re

current

static + dyna

currenth

pe /
Pointers and Records

|

static = dynamic

current”™.name <- “Bob”

Pointers and Records

|
cunent-—+zi!!!!!!!!!l:>
|

static = dynamic

current”™_SSN <- 123456789

What'’s the big deal

We already knew about static data
Now we see we can allocate dynamic data but

Each piece of dynamic data seems to need a
pointer variable and pointers seem to be static

So how can this give me flexibility

_\\

Properties of Lists

We must maintain a list of data
Sometimes we want to use only a little

memory:
Sometimes we need to use more memors(

Declaring variables in the standard way won't
work here because we don't know how many
variables to declare

We need a way to allocate and de-allocate data
dynamically (1.e., on the fly)

Main this_var list head

The IS memory not used by the
variables live in the

We need a pointer variable to access our list
INn the heap

Linked Lists
¢ g un o v 9w U >

With pointers, we can form a “chain” of data
structures:

| 4 | 4+—| 17 ~| 42 | —H

List Node definesa Record
data 1softype Num

next i1softype Ptr toa List Node
endrecord //List Node

. Hmnked List Récﬁrdﬁemplafe/

<Type Name> definesa record e
data 1softype <type>
next 1softype ptr toa <Type Name>

endrecord

Example:
Char_Node definesa record
data 1softype char
next 1softype ptr toa Char Node
endrecord

. #gﬁﬁ?////%//
Creating a Linked List Node

Node definesa record

data 1softype num

next 1softype ptr toa Node
endrecord

And a pointer to a Node record:

current 1softype ptr toa Node
current <- new(Node)

Pointers and Linked Lists

|
|

static dynamic

currenth
current”.data

current”™.next

Accessing the Dlata Field of a Node

current —|—> 42 —H
|

static = dynamic

current”™.data <- 42

current™.next <- NIL

Proper Data Abstraction

g

VsS.

e

““Complex Data Records and Lists

The examples so far have shown a single num
variable as node data, but in reality there are
usually more, as in:

Node Rec Type definesa record
this data 1softype Num
that data i1softype Char
other _data i1softype Some Rec Type
next 1softype Ptr toa Node Rec Type

endrecord // Node Rec Type lI [!i]

““A-Better Approach with Higher

Abstraction

One should separate the data from the structure
that holds the data, as In:

Node Data Type definesa Record

this _data i1softype Num

that data i1softype Char

other _data i1softype Some Rec Type
endrecord // Node Data Type

Node Record Type definesa Record

data i1softype Node Data Type

next i1softype Ptr toa Node Rec Type
endrecord // Node Record Type

Creating a Pointer to the Heap

Main m

list head 1softype ptr toa List Node

Notice that list_head is not initialized and
points to “garbage.”

/’

| Creating a New Node in the List

— 7

Main m

list head <- new(List Node)

/l

Filling In the Data Field

| 42 [4+=

Main m

list head™.data <- 42

The ” operator follows the pointer into the heap.

Creating a Second Node

23

I Main list_head I

list head™.data <- 42
list head™.next <- new(List Node)

The “” operator accesses a field of the record.

/’

Cleanly Terminating the Linked List

[42]-

_H

—)‘91‘-

Main m

list head™.next”.data <- 91
list head™.next”™.next <- NIL

We terminate linked lists “cleanly” using NIL.

/” r

Deleting by Moving the Pointer

e

~ 91}

_H

Main list_head

If there is nothing pointing to an area of memory in

the heap, it isautomatically deleted.

list head <- list head”™.next

