
DATA STRUCTURES USING ‘C’

Pointers

Pointers and Records

current

current^

Bob
123456789

static dynamic

Pointers and Records

current

current^.name <- “Bob”

Bob
123456789

static dynamic

Pointers and Records

current

current^.SSN <- 123456789

Bob
123456789

static dynamic

What’s the big deal
 We already knew about static data
 Now we see we can allocate dynamic data but
 Each piece of dynamic data seems to need a

pointer variable and pointers seem to be static
 So how can this give me flexibility

LB

Properties of Lists
 We must maintain a list of data
 Sometimes we want to use only a little

memory:

 Sometimes we need to use more memory

 Declaring variables in the standard way won’t
work here because we don’t know how many
variables to declare

 We need a way to allocate and de-allocate data
dynamically (i.e., on the fly)

•The heap is memory not used by the stack
•Dynamic variables live in the heap
•We need a pointer variable to access our list
in the heap

Main this_var list_head4

12 18 21 23

Linked Lists

With pointers, we can form a “chain” of data
structures:

List_Node definesa Record
data isoftype Num
next isoftype Ptr toa List_Node

endrecord //List_Node

4 17 42

Linked List Record Template

<Type Name> definesa record
data isoftype <type>
next isoftype ptr toa <Type Name>

endrecord

Example:
Char_Node definesa record

data isoftype char
next isoftype ptr toa Char_Node

endrecord

Creating a Linked List Node
Node definesa record

data isoftype num
next isoftype ptr toa Node

endrecord

And a pointer to a Node record:

current isoftype ptr toa Node
current <- new(Node)

Pointers and Linked Lists

current

current^

current^.next

current^.data

static dynamic

Accessing the Data Field of a Node

current

current^.data <- 42

current^.next <- NIL

42

static dynamic

Proper Data Abstraction

Vs.

Complex Data Records and Lists

The examples so far have shown a single num
variable as node data, but in reality there are
usually more, as in:

Node_Rec_Type definesa record
this_data isoftype Num
that_data isoftype Char
other_data isoftype Some_Rec_Type
next isoftype Ptr toa Node_Rec_Type

endrecord // Node_Rec_Type

LB

A Better Approach with Higher
Abstraction
One should separate the data from the structure

that holds the data, as in:

Node_Data_Type definesa Record
this_data isoftype Num
that_data isoftype Char
other_data isoftype Some_Rec_Type

endrecord // Node_Data_Type

Node_Record_Type definesa Record
data isoftype Node_Data_Type
next isoftype Ptr toa Node_Rec_Type

endrecord // Node_Record_Type

Creating a Pointer to the Heap

list_head isoftype ptr toa List_Node

Notice that list_head is not initialized and
points to “garbage.”

Main list_head

?

Creating a New Node in the List

list_head <- new(List_Node)

Main list_head

?

Filling in the Data Field

list_head^.data <- 42

The ^ operator follows the pointer into the heap.

Main list_head

?42

Creating a Second Node

list_head^.data <- 42
list_head^.next <- new(List_Node)

The “.” operator accesses a field of the record.

Main list_head

42 ?

Cleanly Terminating the Linked List

list_head^.next^.data <- 91
list_head^.next^.next <- NIL

We terminate linked lists “cleanly” using NIL.

Main list_head

42 91

Deleting by Moving the Pointer

If there is nothing pointing to an area of memory in
the heap, it is automatically deleted.

list_head <- list_head^.next

Main list_head

42 91

