
DATA STRUCTURES USING ‘C’

LectureLecture--88
Data Structures

11.3

Define a record as a data structure and how it is used to store
attributes

belonging to a single data element.
 Distinguish between the name of a record and the names of its
fields.
 Define a linked list as a data structure and how it is
implemented using

pointers.
 Understand the mechanism through which the nodes in an
array are

accessed.
 Describe operations defined for a linked list.
 Compare and contrast arrays, records, and linked lists.

Lecture ObjectivesLecture Objectives

After studying this chapter, the student should be able to:After studying this chapter, the student should be able to:

11.4

Operations on array

Although we can apply conventional operations defined for
each element of an array (see Chapter 4), there are some
operations that we can define on an array as a data structure.
The common operations on arrays as structures are
searching, insertion, deletion, retrieval and traversal.

Although searching, retrieval and traversal of an array is an
easy job, insertion and deletion is time consuming. The
elements need to be shifted down before insertion and shifted
up after deletion.

11.5

Algorithm 11.1 gives an example of finding the average of
elements in array whose elements are reals.

11.6

Application
Thinking about the operations discussed in the previous
section gives a clue to the application of arrays. If we have a
list in which a lot of insertions and deletions are expected
after the original list has been created, we should not use an
array. An array is more suitable when the number of
deletions and insertions is small, but a lot of searching and
retrieval activities are expected.

An array is a suitable structure when a small number
of insertions and deletions are required, but a lot of

searching and retrieval is needed.

i

11.7

1111--2 RECORDS2 RECORDS

AA recordrecord isis aa collectioncollection ofof relatedrelated elements,elements, possiblypossibly ofof
differentdifferent types,types, havinghaving aa singlesingle namename.. EachEach elementelement inin aa
recordrecord isis calledcalled aa fieldfield.. AA fieldfield isis thethe smallestsmallest elementelement ofof
namednamed datadata thatthat hashas meaningmeaning.. AA fieldfield hashas aa typetype andand
existsexists inin memorymemory.. FieldsFields cancan bebe assignedassigned values,values, whichwhich
inin turnturn cancan bebe accessedaccessed forfor selectionselection oror manipulationmanipulation.. AA
fieldfield differsdiffers fromfrom aa variablevariable primarilyprimarily inin thatthat itit isis partpart ofof
aa recordrecord..

11.8

Figure 11.7 contains two examples of records. The first
example, fraction, has two fields, both of which are integers.
The second example, student, has three fields made up of
three different types.

Figure 11.7 Records

11.9

Record name versus field name
Just like in an array, we have two types of identifier in a
record: the name of the record and the name of each
individual field inside the record. The name of the record is
the name of the whole structure, while the name of each field
allows us to refer to that field. For example, in the student
record of Figure 11.7, the name of the record is student, the
name of the fields are student.id, student.name and
student.grade. Most programming languages use a period
(.) to separate the name of the structure (record) from the
name of its components (fields). This is the convention we
use in this book.

11.1
0

Example 11.5

TheThe followingfollowing showsshows howhow thethe valuevalue ofof fieldsfields inin FigureFigure 1111..77 areare
storedstored..

11.1
1

Comparison of records and arrays
We can conceptually compare an array with a record. This
helps us to understand when we should use an array and
when to use a record. An array defines a combination of
elements, while a record defines the identifiable parts of an
element. For example, an array can define a class of students
(40 students), but a record defines different attributes of a
student, such as id, name or grade.

11.1
2

Array of records
If we need to define a combination of elements and at the
same time some attributes of each element, we can use an
array of records. For example, in a class of 30 students, we
can have an array of 30 records, each record representing a
student.

Figure 11.8 Array of records

11.1
3

Example 11.6

TheThe followingfollowing showsshows howhow wewe accessaccess thethe fieldsfields ofof eacheach recordrecord inin
thethe studentsstudents arrayarray toto storestore valuesvalues inin themthem..

11.1
4

Example 11.7
However,However, wewe normallynormally useuse aa looploop toto readread datadata intointo anan arrayarray ofof
recordsrecords.. AlgorithmAlgorithm 1111..22 showsshows partpart ofof thethe pseudocodepseudocode forfor thisthis
processprocess..

11.1
5

Arrays versus arrays of records
Both an array and an array of records represent a list of
items. An array can be thought of as a special case of an
array of records in which each element is a record with only
a single field.

11.1
6

1111--3 LINKED LISTS3 LINKED LISTS

AA linkedlinked listlist isis aa collectioncollection ofof datadata inin whichwhich eacheach
elementelement containscontains thethe locationlocation ofof thethe nextnext elementelement——thatthat
is,is, eacheach elementelement containscontains twotwo partsparts:: datadata andand linklink.. TheThe
namename ofof thethe listlist isis thethe samesame asas thethe namename ofof thisthis pointerpointer
variablevariable.. FigureFigure 1111..99 showsshows aa linkedlinked listlist calledcalled scoresscores
thatthat containscontains fourfour elementselements.. WeWe definedefine anan emptyempty linkedlinked
listlist toto bebe onlyonly aa nullnull pointerpointer:: FigureFigure 1111..99 alsoalso showsshows anan
exampleexample ofof anan emptyempty linkedlinked listlist..

11.1
7Figure 11.9 Linked lists

11.1
8

Before further discussion of linked lists, we need to explain
the notation we use in the figures. We show the connection
between two nodes using a line. One end of the line has an
arrowhead, the other end has a solid circle.

Figure 11.10 The concept of copying and storing pointers

11.1
9

Arrays versus linked lists
Both an array and a linked list are representations of a list of
items in memory. The only difference is the way in which the
items are linked together. Figure 11.11 compares the two
representations for a list of five integers.

Figure 11.11 Array versus linked list

11.2
0

Linked list names versus nodes names
As for arrays and records, we need to distinguish between
the name of the linked list and the names of the nodes, the
elements of a linked list. A linked list must have a name. The
name of a linked list is the name of the head pointer that
points to the first node of the list. Nodes, on the other hand,
do not have an explicit names in a linked list, just implicit
ones.

Figure 11.12 The name of a linked list versus the names of nodes

11.2
1

Operations on linked lists
The same operations we defined for an array can be applied
to a linked list.

Searching a linked list
Since nodes in a linked list have no names, we use two
pointers, pre (for previous) and cur (for current). At the
beginning of the search, the pre pointer is null and the cur
pointer points to the first node. The search algorithm moves
the two pointers together towards the end of the list. Figure
11.13 shows the movement of these two pointers through the
list in an extreme case scenario: when the target value is
larger than any value in the list.

11.2
2Figure 11.13 Moving of pre and cur pointers in searching a linked list

11.2
3Figure 11.14 Values of pre and cur pointers in different cases

11.2
4

11.2
5

Inserting a node

Before insertion into a linked list, we first apply the
searching algorithm. If the flag returned from the searching
algorithm is false, we will allow insertion, otherwise we
abort the insertion algorithm, because we do not allow data
with duplicate values. Four cases can arise:
❑ Inserting into an empty list.
❑ Insertion at the beginning of the list.
❑ Insertion at the end of the list.
❑ Insertion in the middle of the list.

11.2
6Figure 11.15 Inserting a node at the beginning of a linked list

11.2
7Figure 11.16 Inserting a node at the end of the linked list

11.2
8Figure 11.17 Inserting a node in the middle of the linked list

11.2
9

11.3
0

Deleting a node
Before deleting a node in a linked list, we apply the search
algorithm. If the flag returned from the search algorithm is
true (the node is found), we can delete the node from the
linked list. However, deletion is simpler than insertion: we
have only two cases—deleting the first node and deleting
any other node. In other words, the deletion of the last and
the middle nodes can be done by the same process.

11.3
1Figure 11.18 Deleting the first node of a linked list

11.3
2Figure 11.19 Deleting a node at the middle or end of a linked list

11.3
3

11.3
4

Retrieving a node
Retrieving means randomly accessing a node for the purpose
of inspecting or copying the data contained in the node.
Before retrieving, the linked list needs to be searched. If the
data item is found, it is retrieved, otherwise the process is
aborted. Retrieving uses only the cur pointer, which points to
the node found by the search algorithm. Algorithm 11.6
shows the pseudocode for retrieving the data in a node. The
algorithm is much simpler than the insertion or deletion
algorithm.

11.3
5

11.3
6

Traversing a linked list
To traverse the list, we need a “walking” pointer, which is a
pointer that moves from node to node as each element is
processed. We start traversing by setting the walking pointer
to the first node in the list. Then, using a loop, we continue
until all of the data has been processed. Each iteration of the
loop processes the current node, then advances the walking
pointer to the next node. When the last node has been
processed, the walking pointer becomes null and the loop
terminates (Figure 11.20).

11.3
7Figure 11.20 Traversing a linked list

11.3
8

11.3
9

Applications of linked lists
A linked list is a very efficient data structure for sorted list
that will go through many insertions and deletions. A linked
list is a dynamic data structure in which the list can start with
no nodes and then grow as new nodes are needed. A node
can be easily deleted without moving other nodes, as would
be the case with an array. For example, a linked list could be
used to hold the records of students in a school. Each quarter
or semester, new students enroll in the school and some
students leave or graduate.

A linked list is a suitable structure if a large number
of insertions and deletions are needed, but searching a

linked list is slower that searching an array.

i

