ATASTRUCTURES USING ‘C’

L_ecture Objectives

After studying this chapter, the student should be able to:

Define a record as a data structure and how it is used to store
attributes

belonging to a single data element.

O Distinguish between the name of a record and the names of its
fields.

L Define a linked list as a data structure and how it is
Implemented using
pointers.

1 Understand the mechanism through which the nodes in an
array are
accessed.

[Describe operations defined for a linked list.

1 CAamnara anA ~rnntract arravie rarnrrde anAd linlzad licte

Operations on array

Although we can apply conventional operations defined for
each element of an array (see Chapter 4), there are some
operations that we can define on an array as a data structure.
The common operations on arrays as structures are
searching, insertion, deletion, retrieval and traversal.

Although searching, retrieval and traversal of an array Is an
easy Job, insertion and deletion Is time consuming. The

elements need to be shifted down before insertion and shifted
up after deletion.

Algorithm 11.1 gives an example of finding the average of
elements in array whose elements are reals.

Algorithm: ArrayAverage (Array, n)

Purpose: Find the average value

Pre: Given the array Array and the number of elements, n
Post: None

Return: The average value

{

sum < 0.0

i< 1

while (i = n)

{
sum < sum + Arrayli]
i< i+1

}

average <— sum/n

Return (average)

Application

Thinking about the operations discussed In the previous
section gives a clue to the application of arrays. If we have a
list in which a lot of Insertions and deletions are expected
after the original list has been created, we should not use an
array. An array IS more suitable when the number of
deletions and insertions is small, but a lot of searching and
retrieval activities are expected.

An array Is a suitable structure when a small number

of insertions and deletions are required, but a lot of
searching and retrieval Is needed.

11-2 RECORDS

A record is a collection of related elements, possibly of
different types, having a single name. Each element in a
record iIs called a field. A field is the smallest element of
named data that has meaning. A field has a type and
exists in memory. Fields can be assigned values, which
In turn can be accessed for selection or manipulation. A
field differs from a variable primarily in that it is part of
a record.

Figure 11.7 contains two examples of records. The first
example, fraction, has two fields, both of which are integers.
The second example, student, has three fields made up of

three different types.

13 numerator 2005 1d
17 denominator “George Boole” name
fraction A grade

student

Figure 11.7 Records

Record name versus field name

Just like In an array, we have two types of identifier in a
record: the name of the record and the name of each
Individual field inside the record. The name of the record Is
the name of the whole structure, while the name of each field
allows us to refer to that field. For example, in the student
record of Figure 11.7, the name of the record is student, the
name of the fields are student.id, student.name and
student.grade. Most programming languages use a period
(.) to separate the name of the structure (record) from the
name of its components (fields). This is the convention we
use in this book.

Example 11.5

The following shows how the value of fields in Figure 11.7 are
stored.

student.id <= 2005 student.name < "G. Boole" student.grade < 'A

Comparison of records and arrays

We can conceptually compare an array with a record. This
helps us to understand when we should use an array and
when to use a record. An array defines a combination of
elements, while a record defines the identifiable parts of an
element. For example, an array can define a class of students
(40 students), but a record defines different attributes of a
student, such as id, name or grade.

Arrayv of records

If we need to define a combination of elements and at the
same time some attributes of each element, we can use an
array of records. For example, in a class of 30 students, we
can have an array of 30 records, each record representing a

student.

students [1]

1d name

grade

students [2]

1d name

grade

students [30]

1d name

grade

students

Figure 11.8 Array of records

Example 11.6

The following shows how we access the fields of each record In
the students array to store values in them.

(students[1]).id < 1001 (students[1]).name < "J. Aron" (students[1]).grade < 'A’
(students[2]).id < 2007 (students[2]).name < "F. Bush" (students[2]).grade < 'F’

(students[30]).id <3012 (students[30]).name < "M. Blair" (students[1]).grade < "B’

Example 11.7

However, we normally use a loop to read data into an array of
records. Algorithm 11.2 shows part of the pseudocode for this
process.

Algorithm 11.2 Part of the pseudocode to read student records

i< 1
while (i < 31)

{

read (students [i]).id
read (students [i]).name
read (students [i]).grade
i< i+1

Arrays versus arrays of records

Both an array and an array of records represent a list of
items. An array can be thought of as a special case of an
array of records in which each element is a record with only
a single field.

11-3 LINKED LISTS

A linked list I1s a collection of data in which each
element contains the location of the next element—that
IS, each element contains two parts: data and link. The
name of the list Is the same as the name of this pointer
variable. Figure 11.9 shows a linked list called scores
that contains four elements. We define an empty linked
list to be only a null pointer: Figure 11.9 also shows an
example of an empty linked list.

null pointer

atinkedlisc 1 W—{ B—{ B X

SCOres data link data link data link data link

An empty
linked list X Anode [—

scores data link

Figure 11.9 Linked lists

Before further discussion of linked lists, we need to explain
the notation we use In the figures. We show the connection
between two nodes using a line. One end of the line has an

arrowhead, the other end has a solid circle.

A copy of .
the address of First address
the node copy
: First copy is stored here =~ ------- .— ;
node node 5 node
5 Second copy is stored here ~ ------- .— ;
The copy : Second address
of the address is copy
stored here

Figure 11.10 The concept of copying and storing pointers

Arrays versus linked lists

Both an array and a linked list are representations of a list of
items in memory. The only difference is the way in which the
items are linked together. Figure 11.11 compares the two
representations for a list of five integers.

SCOrcs -_
o
SCOrcs
scores [1] 66 —> 72 .
scores [2] 72
— 96
scores [3] 74 -
scores [4] 85 > 35 -_
scores [3] 96
—>{ 7 I
a. Array representation b. Linked list representation

Figure 11.11 Array versus linked list

Linked list names versus nodes names

As for arrays and records, we need to distinguish between
the name of the linked list and the names of the nodes, the
elements of a linked list. A linked list must have a name. The
name of a linked list is the name of the head pointer that
points to the first node of the list. Nodes, on the other hand,
do not have an explicit names in a linked list, just implicit
ones.

*scores *cur

Figure 11.12 The name of a linked list versus the names of nodes

Operations on linked lists

The same operations we defined for an array can be applied
to a linked list.

Searching a linked list

Since nodes in a linked list have no names, we use two
pointers, pre (for previous) and cur (for current). At the
peginning of the search, the pre pointer is null and the cur
pointer points to the first node. The search algorithm moves
the two pointers together towards the end of the list. Figure
11.13 shows the movement of these two pointers through the
list In an extreme case scenario: when the target value Is
larger than any value in the list.

list .—> 102 132 178 201
Atthe start --wo--

132 178 201

After one move

pre cur

After fOUr MOVES ====---ccccccccc-c-ccc----c-----------------m——————=—- i

Figure 11.13 Moving of pre and cur pointers in searching a linked list

Case 1

Case 2

Case 3

Case 4

list

[o]

pre

list

102

cur

Target: 98 | flag: false

132

178

Target: 132 | flag: true

[o—

list

list

&—

102

pre

102

102

C

132

132
ur
pre

Target: 150 | flag: false

cur

178

201
201
201
Target: 305 | flag: false
201 .
pre cur

Figure 11.14 Values of pre and cur pointers in different cases

Algorithm 11.3 Searching a linked list

Algorithm: SearchLinkedList (list, target)

Purpose: Search the list using two pointers: pre and cur
Pre: The linked list (head pointer) and target value
Post: None

Return: The position of pre and cur pointers and the value of the flag (true or
false)

{

pre < null
cur < list
while (target < (*cur).data)
{
pre < cur
cur < (*cur).link
}
if ((*cur).data = target) flag < true
else flag < false
return (cur, pre, flag)

Inserting a node

Before insertion into a linked list, we first apply the
searching algorithm. If the flag returned from the searching
algorithm is false, we will allow insertion, otherwise we
abort the insertion algorithm, because we do not allow data
with duplicate values. Four cases can arise:

d Inserting into an empty list.

d Insertion at the beginning of the list.

d Insertion at the end of the list.

d Insertion in the middle of the list.

After the search

cur «<— (*new).link

list «<— new

new

= IES

new

o

B

new

—

KA

.—> 102 (XN 102 XX oo e
list list list
pre cur pre cur pre cur

list .J 132 .—» 178 201

Result

Figure 11.15 Inserting a node at the beginning of a linked list

After the search

(*pre).link <€— new

(*new).link <«— null

°0 0 —)

ncw

.—» 220
I—>

ee e —» 20] .—|
pre

cur

ncw

.—» 220
I—>

e e —» 201 .—|
pre

list ._>

102

132

178

cur
201 .—|

Result

Figure 11.16 Inserting a node at the end of the linked list

After the search

000 —)

pre

ncw

cur

(*new).link €— cur

(*pre).link <— new

ncw

& -

ncw

eee —» (32 178 eo0eo|jo0oe —» (32 I—P 178 XX
pre cur pre cur
Result I ml
1ist.—> 102 132 I—» 178 201

Figure 11.17 Inserting a node in the middle of the linked list

Algorithm 11.4 Inserting a node in a linked list

Algorithm: InsertLinkedList (list, target, new)

Purpose: Insert a node in the linked list after searching the list for the right
position

Pre: The linked list and the target data to be inserted
Post: None

Return: The new linked list

{

searchlinkedlist (list, target, pre, cur, flag)
/I Given target and returning pre, cur, and flag

if (flaa = true) return list /I No duplicate
if (list = null /l Insert into empty list

{
}

list < new

if (pre = null) /l Insertion at the beginning
{

(*new).link < cur

list < new

return list

}

if (cur = null) /l Insertion at the end
{

(*pre).link < new

(*new).link < null

return list

}

(*new).link < cur // Insertion in the middle
(*pre).link < new
return list

Deleting a node

Before deleting a node in a linked list, we apply the search
algorithm. If the flag returned from the search algorithm is
true (the node Is found), we can delete the node from the
linked list. However, deletion is simpler than insertion: we
have only two cases—deleting the first node and deleting
any other node. In other words, the deletion of the last and
the middle nodes can be done by the same process.

After the search

list «=— (*cur).link

L,

ST =
pre cur pre cur
list .— 10 . |—> 132 178 201
Deleted
Result

Figure 11.18 Deleting the first node of a linked list

After the search

(*pre).link <€— (*cur).link

132

178 eoeo
pre cur pre cur
Predecessor [L Successor
list .—»E-J 132 . 178 201
Deleted
Result

Figure 11.19 Deleting a node at the middle or end of a linked list

Algorithm 11.5 Deleting a node in a linked list

Algorithm: DeleteLinkedList (list, target)

Purpose: Delete a node in a linked list after searching the list for the right node
Pre: The linked list and the target data to be deleted

Post: None

Return: The new linked list

{
/I Given target and returning pre, cur, and flag
searchlinkedlist (list, target, pre, cur, flag)
if (flag = false) return list /| The node to be deleted not found

if (pre = null) // Deleting the first node
{

list< (*cur).link

return list
}
(*pre).link < (*cur).link /| Deleting other nodes
return list

Retrieving a node

Retrieving means randomly accessing a node for the purpose
of Inspecting or copying the data contained in the node.
Before retrieving, the linked list needs to be searched. If the
data item is found, it is retrieved, otherwise the process Is
aborted. Retrieving uses only the cur pointer, which points to
the node found by the search algorithm. Algorithm 11.6
shows the pseudocode for retrieving the data in a node. The
algorithm iIs much simpler than the insertion or deletion
algorithm.

Algorithm 11.6 Retrieving a node in a linked list

Algorithm: RetrieveLinkedList (list, target)
Purpose: Retrieves the data in a node after searching the list for the right node
Pre: The linked list (head pointer) and the target (data to be retrieved)

Post: None

Return: Return the data retrieved

{

searchlinkedlist (list, target, pre, cur, flag)
if (flag = false) return error // The node not found

return (*cur).data

Traversing a linked list

To traverse the list, we need a “walking” pointer, which is a
pointer that moves from node to node as each element is
processed. We start traversing by setting the walking pointer
to the first node In the list. Then, using a loop, we continue
until all of the data has been processed. Each iteration of the
loop processes the current node, then advances the walking
pointer to the next node. When the last node has been
processed, the walking pointer becomes null and the loop
terminates (Figure 11.20).

list

walker

102

132

178

Figure 11.20 Traversing a linked list

201

Algorithm 11.7 Traversing a linked list

Algorithm: TraverseLinkedList (list)

Purpose: Traverse a linked list and process each data item
Pre: The linked list (head pointer)

Post: None

Return: The list
{

walker < list
while (walker = null)

{
Process (*walker).data
walker < (*walker).link
}
return list

Applications of linked lists

A linked list Is a very efficient data structure for sorted list
that will go through many insertions and deletions. A linked
list Is a dynamic data structure in which the list can start with
no nodes and then grow as new nodes are needed. A node
can be easily deleted without moving other nodes, as would
be the case with an array. For example, a linked list could be
used to hold the records of students in a school. Each quarter
or semester, new students enroll in the school and some
students leave or graduate.

A linked list is a suitable structure if a large number

of Iinsertions and deletions are needed, but searching a
linked list is slower that searching an array.

