
DATA STRUCTURES USING ‘C’

LectureLecture--0606

Data Structures

Introduction to DS Introduction to DS
DefinitionDefinition

An algorithm is a finite sequence of
instructions each of which has a clear
meaning and can be performed with a
finite amount of effort in a finite
length of time.

Structure of AlgorithmsStructure of Algorithms

Input step
Assignment step
Decision step
Repetitive step
Output step

Properties of AlgorithmProperties of Algorithm
Finiteness

• An algorithm must terminate after a finite number of
steps.

Definiteness
• Steps must be precisely defined.
• No ambiguity in steps.

Generality
• It must be generic enough to solve all problem of

same class
Effectiveness

• The steps of operations must be basic
• Not too much complex

 Input-Output
• It must have initial and precise inputs.
• Output may be generated both at intermediate and

final steps.

Data Structure and AlgorithmsData Structure and Algorithms

Data Structure
• A data structure is a way of organizing
data that considers not only the items
stored, but also their relationship to each
other.

The design of an efficient algorithm
for the solution of the problem needs
the use of appropriate data structure.

The program which satisfy all the
properties of algorithm is not enough
for efficient implementation of
algorithm.

ContCont……

It is important to arrange the data in
well structured manner to prepare
efficient algorithm.

Thus, for the design of efficient
solution of a problem, it is essential
that algorithm goes hand in hand
with appropriate data structure.

Efficiency of AlgorithmEfficiency of Algorithm

One problem can be solved in many
ways then to choose the best one
among them we required to measure
the performance of algorithm.

The performance of algorithm can be
measured by two main parameter:
• Time
• Space

Efficiency of Algorithm (Efficiency of Algorithm (ContCont…)…)

Empirical or posterior testing
approach
• Implement the complete algorithms and
execute them for various instances of the
problems.

• The time taken for execution of the
programs is noted.

• Algorithm taking less time is considered
as the best among all.

• Its disadvantage is that it depend on
various factors like –
machine on which it is executed.

Efficiency of Efficiency of Algorithm (Algorithm (ContCont…)…)

Programming language with which it is
implemented

Skills of a programmer
Theoretical or apriori approach

• Mathematically determine the resources
such as time and space needed by
algorithm in form of a function of a
parameter related to the instance of the
problem considered.

• This approach is entirely machine,
language and program independent.

• It allows to study the efficiency of the
algorithm on any input size instance.

Asymptotic NotationAsymptotic Notation

Apriori analysis uses asymptotic
notations to express the time
complexity of algorithms.

Asymptotic notations are meaningful
approximations of functions that
represent the time and space
complexity of a program.

Asymptotic Asymptotic Notation (Notation (ContCont…)…)

Big O notation
• f(n)=O(g(n)) (read: f of n is big oh of g of
n), if there exists a positive integer n0 and
a positive number c such that
|f(n)|≤c|g(n)|, for all n≥n0.

• It shows upper bound of a function.

f(n) g(n)
16n3+12n2+12n n3 f(n) = O(n3)

34n – 90 n f(n) = O(n)
56 1 f(n) = O(1)

Asymptotic Notation (Asymptotic Notation (ContCont…)…)

Omega notation
• f(n)=Ω(g(n))(read: f of n is omega of g of
n), if there exists a positive integer n0 and
a positive integer c such that
|f(n)|≥c|g(n)|, for all n≥n0.

• Here g(n) indicate the lower bound of the
function f(n).

f(n) g(n)
16n3+12n2+12n n3 f(n) = Ω(n3)

34n – 90 n f(n) = Ω(n)
56 1 f(n) = Ω(1)

Asymptotic Notation (Asymptotic Notation (ContCont…)…)

Thita notation
• f(n)= Ө(g(n))(read: f of n is thita of g of
n), if there exists a positive integer n0 and
a positive integer c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤c2|g(n)|, for all n≥n0.

• Here g(n) indicate the upper bound as
well as lower bound of the function f(n).

f(n) g(n)
16n3+12n2+12n n3 f(n) = Ө(n3)

34n – 90 n f(n) = Ө(n)
56 1 f(n) = Ө(1)

Asymptotic Notation (Asymptotic Notation (ContCont…)…)

Little oh notation
• f(n)=o(g(n)) (read: f of n is little oh of g
of n) if f(n)=O(g(n)) and f(n) ≠ Ω(g(n)).

f(n) g(n)
18n3 + 9 n3 f(n) = o(n3)

because
f(n) = O(n3) and

f(n) ≠ Ω(n3)

Average, Best and Worst CasesAverage, Best and Worst Cases

The time complexity of an algorithm
is dependent on parameters
associated with the input/output
instances of the problem.

Many times the input size is only used
to calculate the complexity, in such
cases if input size is larger then
execution time will be larger.

But all the time it is not appropriate
to consider only the size of input for
calculating complexity.

ContCont……

Sometimes, the complexity is also
depends on the nature of input.

For example, consider the following
data for sequentially searching the
first even number in the list.

Input data Case
-1, 3, 5, 7, -5, 11, -13, 17, 71, 9, 3, 1, -23, 39, 7, 40 Worst
6, 11, 25, 5, -5, 6, 23, -2, 26, 71, 9, 3, 1, -23, 39, 7 Best
-1, 3, 11, 5, 7, -5, -13, 16, 11, 25, 5, -5, 6, 23, -2, 7 Average

Worst case:
• The input instance for which algorithm takes the

maximum possible time is called the worst case.
• The time complexity in such a case is called worst

case time complexity.
 Best case:

• The input instance for which algorithm takes the
minimum possible time is called the best case.

• The time complexity in such a case is called best
case time complexity.

 Average case:
• All input instances which are neither of a best case

nor of a worst case are categorized as average
case.

• The time complexity of the algorithm in such cases
is referred to as the average case complexity.

