ATASTRUCTURES USING ‘C’

Review: Records

HOW CAN THIS BE TRUE ?

Below the four

parts are

moved around

The partitions

are gxactly the

game, as those

used above

Z From where comes this "haole™ ?

LB

There is nothing to prevent us from placi
field within a record):

Date_ Type definesa record
day, month, year, isoftype num
Endrecord

Student Type definesa record
name i1softype string
gpa i1softype num

birth_day i1softype Date Typ
graduation_day isoftype Date:;yﬁé\\\\\\

endrecord

Date Type:

Student_Type:

birth_day

graduation_day

day month year
name gpa
day month year
day month year

bob 1softype Student Type

bob.birth day.month <- 6

Types vs. Variables

e TYPE Definitions

o Create templates for new kinds of variables

> Do not create a variable — no storage space Is
allocated

> Have unlimited scope

e \VARIABLE Declarations

o Actually create storage space

o Have limited scope - only module containing the
variable can “see” it

o Must be based on an existing data type

Dynamic Memory and Pointers

Dynamic vs. Static
Static (fixed In size)

e Sometimes we create data structures that
are “fixed” and don’t need to grow or
shrink.

Dynamic (change in size)

* Other times, we want the ability to
Increase and decrease the size of our data
structures to accommodate changing
needs.

Static data is data declared “ahead of time.”

It is declared in a module (or main algorithm) and “lives” for as long
as that module is active.

If we declare more static variables than we need, we waste space.
If we declare fewer static variables than we need, we are out of luck.

Often, real world problems mean that we don’t know how many
variables to declare, as the number needed will change over time.

Dynamic data refers to data structures which can
grow and shrink to fit changing data requirements.

We can allocate (create) additional dynamic variables
whenever we need them.

We can de-allocate (kill) dynamic variables whenever
we are done with them.

A key advantage of dynamic data is that we can
always have a exactly the number of variables
required - no more, no less.

For example, with pointer variables to connect them,
we can use dynamic data structures to create a chain
of data structures called a linked list.

Dynamic data gives us more flexibility
Memory is still limited

But now we can use It where we need It
And we can determine that while the

program Is running

Examples?
Printer Queues
Airliners
uh, everything?

LB

LB

Heap (Dynamic Area)
(Store stuff here)

v

Stack (Static Area)
(Store stuff here)

Algorithm and Module Code
(What you wrote)

We must maintain a list of data
Sometimes we want to use only a little memory:

Sometimes we need to use more memory

Declaring variables in the standard way won’t
work here because we don’t know how many
variables to declare

We need a way to allocate and de-allocate data
dynamically (i.e., on the fly)

The Stack

* Recall the activation stack
— The stack can expand, but as for the data...
— Each frame contains static (fixed size) data

&
i

Proc 1 this_varl_] that_varl_|

Algo vari|ll var2lll varslll

The number of
variables needed
come from the
“Isoftype”
statements.

LB

The Stack and Heap

Heap

Main this_var [4
Stack

that_var

my_num_ptr

The heap is memory not used by the stack

e As stack grows,
e Static variables
e Dynamic variab

neap shrinks
Ive in the stack

es live in the heap

What kind of variable is this???

LB

« \We know (sort of) how to get a pointer
variable

my num_ptr 1softype Ptr toa
Num

 But how do we get it to point at something?

« Takes a type as a parameter
 Allocates memory in the heap for the type
e Returns a pointer to that memory

my num_ptr <- new(Num)
dynamic_string <- new(String)
list head <- new(Node)

Heap: Dynamic

‘Main my num_ptr | Stack: Static

When we “follow a pointer”, we say that we
dereference that pointer

The carat () means “dereference the
pointer”

my num_ptr”™ means ’follow my num_ptr
to wherever It points”

My num_ ptr”™ <- 43isvalid

Ptrl i1softype Ptr toa Num
Ptr2 1softype Ptr toa Num
5 5 PtrI <- new(Num)
[Pt =Pt
— rint(Ptri~, Ptr
Ptr2~ <= 7
I rint(Ptri®, Ptr
Ptr I Num
Ptr
Ptr2 ¢ I

static dynamic

A record to hold two items of data - a name and a
SSN:

Student definesa record
- - Name

name 1softype String
SSN isoftype num SSN

endrecord

And a pointer to a Student record:

current i1softype ptr toa Student
current <- new(Student)

