ATASTRUCTURES USING ‘C’

The Queue ADT stores arbitrary Auxiliary queue

objects operations:
Insertions and deletions follow object front(): returns the
the first-in first-out scheme element at the front without

removing it

Insertions are at the rear of the : :
Integer size(): returns the

gueue and removals are at the
number of elements stored

front of the queue : L
: . boolean iIsEmpty(): indicates
Main queue operations: whether no elements are
enqueue(object): inserts an stored
element at the end of the queue Exceptions

object dequeue(): removes and : :

returns the element at the front of Attempting the execution of

the queue dequeue or front on an empty
queue throwsan
EmptyQueueException

Operation
enqueue(b)
enqueue(3)
dequeue()
enqueue(7)
dequeue()
front()
dequeue()
dequeue()
ISEmpty()
enqueue(9)
enqueue(7)
size()
enqueue(3)
enqueue(5)
dequeue()

Output

~N N w | o |

“error”
true

Q

()

(5. 3)
3)

3. 7)
(7)

(7)

0

0

0

(9)

9. 7)
9. 7)
9,7,3)
(9,7,3,5)
(7,3,5)

Use an array of size N in a circular fashion

Two variables keep track of the front and rear
f index of the front element
r index immediately past the rear element

Array location r is kept empty

normal configuration

wrapped-around configuration

We use the Algorithm size()

modulo operator return
(remainder of -
division) Algorithm isEmpty()

return

Operation enqueue Algorithm enqueue(o)
throws an exception if if = then
the array is full S

This exception Is T
Implementation-
dependent <

Operation dequeue Algorithm dequeue()

throws an exception if If then
the queue is empty throw

This exception is else

specified in the queue «—

ADT <_

return

» We can implement a queue with a doubly linked list
The front element is stored at the first node
The rear element is stored at the last node

» The space used is O(n) and each operation of the
Queue ADT takes O(1) time r

Java interface
corresponding to
our Queue ADT

Requires the
definition of class
EmptyQueueException

No corresponding
built-in Java class

public interface Queue {
public int size();
public boolean isEmpty();

public Object front()
throws EmptyQueueException;

public void enqueue(Object o);

public Object dequeue()
throws EmptyQueueException;

We can implement a round robin scheduler using a
gueue, Q, by repeatedly performing the following
steps:

e = Q.dequeue()

Service element e

Q.enqueue(e)

The Queue

1. Deque the 2. Service the 3. Enqueue the
next element next element serviced element

Shared
Service

Y

