ATASTRUCTURES USING ‘C’




Data Structures







Examine queue processing
Define a queue abstract data type
Demonstrate how a queue can be used

6-4




a collection whose elements are
added at one end (the of the
queue) and removed from the other

6-5




‘Adding an element

Front of queue i
New element is
added to the rear
of the queue




‘Removing an element

New front element of queue

l
R

removed from the
front of the queue



For any kind of problem involving FIFO
data

Printer queue inter in MC 235)

6-8




In where the
goal is to reduce waiting times:

traffic at a

6-9




- add an element to the tall
of a queue
remove an element from
the head of &

s not legal to access the eleme
e middle of the queue!

6-10




Operation

Description

dequeue | Removes an element from the front of the queue
enqueue  Adds an element to the rear of the queue

first Examines the element at the front of the queue
ISEmpty Determines whether the queue is empty

s|ze Determines the number of elements in the queue

toString

Returns a string representation of the queue




<<interface>>
QueueADT

dequeue()
enqueue()
first()
ISEmpty()
size()
toString()

6-12




public interface QueueADT<T>

{
// Adds one element to the rear of the queue
public void enqueue (T element);
// Removes and returns the element at the front of
the queue
public T dequeue( );
// Returns without removing the element at the front
of the queue
public T first( );
// Returns true if the gueue contains no elements
public boolean iIsempty( );
// Returns the number of elements in the queue
public int size();
// Returns a string representation of the queue

—putrcStrmgtoStrmg (),



that encodes a message by shifting each
letter In a Mess pnstant amount

6-14




ROT13
Each letter Is shifted by 13

Wikipedia)




change how much a
letter Is shifted depending on where the
letter is In the message

agquence of

uch each

31 7 4 2 5

6-16




Encoded message

Decoded message

6-17




We can use a queue to store the
values of the key

6-18




See

Note that there are two copies of the key,
stored In two separate queues

The encoc

6-19




Codes

CircularArrayQueue <<interface>>
- QueueADT
rear
eeuE() - —— —D enqueue()
dequeue() c!equeue()
first() f'rSt()
iSEmpty( ) ISEmpty()
size() S'Ze(-)
toString() toString()
H
Codes

main ()




Simulate the waiting line at a movie
theatre:

Determine how many cashiers are needed to
keep the cu 2 under 7 minutes

5 seconds
23S once a

6-21




TicketCounter

LinkedQueue )
<<interface>>
QueueADT
front
rear
enqueue()
enqueue e — — - _| >
degueuegg qequeue()
first() f|rst( )
ISEmpty() |§Empty( )
Sh() S|ze(_)
toString() toString()
4
: Customer
TicketCounter arrivalTime
PROCESS departureTime
MAX_CASHIERS = f=====""" * | Customer(int arrives)
NUM_CUSTOMERS getArrivalTime( )
: setDepartureTime()
main() getDepartureTime()
totalTime()




Average time
(in seconds)

6-23




What do we need to implement a queue?
A data structure (

6-24




Internally, the queue Is represented as a
with each node
containing a data element

1e linked list

Inked list

6-25




6-26




What If the queue Is empty?

What if there |

6-27




New element is added in a node at the end of the list,
rear points to the new node, and count is incremented

6-28




deqgueue

Node containing Is removed from the front of the list (see
previous slide), front now points to the node that was
formerly second, and count has been decremented.

rear

front

count




The queue Is represented as a linked
list of nodes:
We will again use the

ead of the

6-30




public class LinkedQueue<T> implements QueueADT<T>

{

/**

* Attributes

*/

private int count;

private LinearNode<T> front, rear,

/**

* Creates an empty gueue.
*/
public LinkedQueue()
{
count = 0;
front = rear = null;

}

The LinkedQueue
class




public void enqueue (T element)

{

LinearNode<T> node = new LinearNode<T> (element);

If (ISEmpty())
front = node;

else

rear.setNext (node); The enqueu e( )
rear = node; 0perati0n
count++;

}




// Removes the element at the front of the queue and returns a
/I reference to it. Throws an EmptyCollectionException if the
[/ queue is empty.

public T dequeue () throws EmptyCollectionException

{
if iIsEmpty())

throw new EmptyCollectionException ("queue");

T result = front.getElement();

front = front.getNext(); The dequeu e( )
count--; _
if ISEmpty()) operation

rear = null;

return result;




Use an array in which
end of the c

represents one

e next open

6-34




A queue aq containing four elements

6-35




Element is added at the array location given by the
(old) value of rear, and then rear is incremented.

6-36




ag

Element

IS removed from array location O,

remaining elements are shifted forward one position
In the array, and then rear is decremented.

ueue

rear

0 1 2 3 4

- v - -




6-38




public class ArrayQueue<T> implements QueueADT<T>

{
private final int DEFAULT_CAPACITY = 100;

private int rear;

private T[] queue;
The ArrayQueue
pL{lb|IC ArrayQueue() class
rear = 0;

gueue = (T[])(new Object[DEFAULT_CAPACITY]));

}
public ArrayQueue (int initialCapacity)

{

rear = 0;
gueue = (T[])(new Object[initialCapacity]);
}




// Adds the specified element to the rear of the queue,
/| expanding the capacity of the queue array if

/| necessary.

public void enqueue (T element)

{
If (size() == queue.length)
expandCapacity( );

gueue[rear] = element;
rear++;

}

The enqueue()
operation




/| Removes the element at the front of the queue and returns
/| areference to it. Throws anEmptyCollectionException if the
[/ queue is empty.

public T dequeue () throws EmptyCollectionException

{
if iIsEmpty())
throw new EmptyCollectionException ("queue");
T result = queue[0];

rear--;
/I shift the elements The deq Ueue( )
for (inti=0; i <rear; i++) Operation

gqueue[i] = queue[i+l];
gueue[rear] = null;
return result;

}




- |If we don't fix one end of the queue at
Index O, we won't have to shift elements

- Circular array is an array that
conceptually loops around on itself

The last index is thought to “precede” index
0

In an array whose last index is n, the location
“before” index O iIs index n; the location
“after” index n is index O

Need to keep track of where the front as

well as the rear of the queue are at any
given time



Conceptual Example of a Circular Queue

front
After 5
1 After 7 enqueues 1 dequeues
O\ O\
12 — 1> <« front
11 11
10 «——rear 10 +— fear

o rear
1 /
0

\ <« front

12
11

10

After 8 more engueues




cq

rear

count




¢q

08 ——
front queue
2 4
rear count




Queue from previous slide

6-46




When an element is enqueued, the value
of rear Is incremented

But it must take into account the need to
loop back to index O:

rear = (rear+1) 26 queue.length;

Can this array implementation also reach
capacity?



cq

cq

O 1 2 3

2

front queue

1 3
rear count
2

front queue

2 4

rear count

Suppose we try to add
one more item to a
gueue implemented by
an array of length 4

The queue is now full.
How can you tell?



cq

cq

2

front queue

2 4

rear count

2

front queue

2 4

rear count

O 1 2 3

- We can’t just double

! the size of the array:

. circular properties of
the queue will be lost

O 1 2 3 4 5 6 7

N\

These locations
should be in use




We could build the new array, and copy the queue elements
Into contiguous locations beginning at location front:

0 1 2 3 45 6 7
2 7 | |

front queue i i
—_—
6 4
rear count - v




Better: copy the queue elements in order to the beginning
of the new array

O 1 2 3 4 5 6 7
0 "] |

front queue

-

4 4
rear count




cq

New element is added at rear = (rear+1) % queue.length

See expandCapacity() in CircularArrayQueue.java

0

front

S}
rear

O 1 2 3 4 5 6 7

queue

S}
count

>

-

N =

6-52




The linked implementation of a queue
does not suffer because of the need to
operate on both ends of the queue (why
not?)

e enqueue operation:
« O(1) for linked implementation

¢ O(n) for circular array implementation if need
to expand capacity, O(1) otherwise

What about the noncircular array
Implementation?



- deqgqueue operation:

« O(1) for linked Implementation

« O(1) for circular array
Implementation

* O(n) for noncircular array
Implementation (why?)



