
DATA STRUCTURES USING ‘C’

LectureLecture--1414
Data Structures

The Queue ADT

Lecture ObjectivesLecture Objectives
• Examine queue processing
• Define a queue abstract data type
• Demonstrate how a queue can be used

to solve problems
• Examine various queue

implementations
• Compare queue implementations

6-4

QueuesQueues
• Queue: a collection whose elements are

added at one end (the rear or tail of the
queue) and removed from the other end
(the front or head of the queue)

• A queue is a FIFO (first in, first out) data
structure

• Any waiting line is a queue:
• The check-out line at a grocery
store

• The cars at a stop light
• An assembly line

6-5

Conceptual View of a QueueConceptual View of a Queue

6-6

Front of queue

Adding an element

New element is
added to the rear
of the queue

Conceptual View of a QueueConceptual View of a Queue

6-7

Removing an element

New front element of queue

Element is
removed from the
front of the queue

Uses of Queues in ComputingUses of Queues in Computing

• For any kind of problem involving FIFO
data

• Printer queue (e.g. printer in MC 235)
• Keyboard input buffer
• GUI event queue (click on buttons,

menu items)
• To encode messages (more on this

later)

6-8

• In simulation studies, where the
goal is to reduce waiting times:
• Optimize the flow of traffic at a
traffic light

• Determine number of cashiers to
have on duty at a grocery store
at different times of day

• Other examples?
6-9

Uses of Queues in Computing

Queue OperationsQueue Operations
• enqueue : add an element to the tail

of a queue
• dequeue : remove an element from

the head of a queue
• first : examine the element at the

head of the queue (“peek”)
• Other useful operations (e.g. is the

queue empty)
• It is not legal to access the elements in

the middle of the queue!

6-10

Operations on a QueueOperations on a Queue

6-11

Operation Description

dequeue Removes an element from the front of the queue

enqueue Adds an element to the rear of the queue

first Examines the element at the front of the queue

isEmpty Determines whether the queue is empty

size Determines the number of elements in the queue

toString Returns a string representation of the queue

The The QueueADTQueueADT interface in UMLinterface in UML

6-12

<<interface>>
QueueADT

dequeue()
enqueue()
first()
isEmpty()
size()
toString()

Interface to a Queue in JavaInterface to a Queue in Java
public interface QueueADT<T>
{

// Adds one element to the rear of the queue
public void enqueue (T element);
// Removes and returns the element at the front of
the queue
public T dequeue();
// Returns without removing the element at the front
of the queue
public T first();
// Returns true if the queue contains no elements
public boolean isEmpty();
// Returns the number of elements in the queue
public int size();
// Returns a string representation of the queue
public String toString();

} 6-13

Using Queues: Coded MessagesUsing Queues: Coded Messages

• A Caesar cipher is a substitution code
that encodes a message by shifting each
letter in a message by a constant amount
k
• If k is 5, a becomes f, b becomes

g, etc.
•Example: n qtaj ofaf

• Used by Julius Caesar to encode
military messages for his generals
(around 50 BC)

• This code is fairly easy to break! 6-14

• Modern version: ROT13
• Each letter is shifted by 13
• “used in online forums as a
means of hiding spoilers,
punchlines, puzzle solutions, and
offensive materials from the
casual glance” (Wikipedia)

• What is the advantage of
shifting 13?
• Hint ROT13(A) = N, ROT13(N)
= A

6-15

Using Queues: Coded Messages

Using Queues: Coded MessagesUsing Queues: Coded Messages
• An improvement: change how much a

letter is shifted depending on where the
letter is in the message

• A repeating key is a sequence of
integers that determine how much each
character is shifted

• Example: consider the repeating key
3 1 7 4 2 5

• The first character in the message is shifted
by 3, the next by 1, the next by 7, and so on

• When the key is exhausted, start over at the
beginning of the key 6-16

An Encoded Message Using a An Encoded Message Using a
Repeated KeyRepeated Key

6-17

n o v a n g j h l m u u r x l v

3 1 7 4 2 5 3 1 7 4 2 5 3 1 7 4
k n o w l e d g e i s p o w e r

Encoded message

Key

Decoded message

• We can use a queue to store the
values of the key
• dequeue a key value when
needed

• After using it, enqueue it back
onto the end of the queue

• So, the queue represents the
constantly cycling values in the
key

6-18

Using Queues: Coded Messages

Using Queues: Coded MessagesUsing Queues: Coded Messages

• See Codes.java
• Note that there are two copies of the key,

stored in two separate queues
• The encoder has one copy
• The decoder has a separate copy

• Why?

6-19

UML Description of UML Description of CodesCodes
ProgramProgram

6-20

CircularArrayQueue

front
rear
enqueue()
dequeue()
first()
isEmpty()
size()
toString()

<<interface>>
QueueADT

enqueue()
dequeue()
first()
isEmpty()
size()
toString()

Codes

main ()

Using Queues:Using Queues:
Ticket Counter SimulationTicket Counter Simulation

• Simulate the waiting line at a movie
theatre:
• Determine how many cashiers are needed to

keep the customer wait time under 7 minutes
• Assume:

• Customers arrive on average every 15 seconds
• Processing a request takes two minutes once a

customer reaches a cashier
• See Customer.java, TicketCounter.java

6-21

UML UML Description of Description of TicketCounterTicketCounter
ProgramProgram

6-22

LinkedQueue

front
rear

enqueue()
dequeue()
first()
isEmpty()
size()
toString()

<<interface>>
QueueADT

enqueue()
dequeue()
first()
isEmpty()
size()
toString()

TicketCounter

PROCESS
MAX_CASHIERS
NUM_CUSTOMERS

main()

Customer

arrivalTime
departureTime
Customer(int arrives)
getArrivalTime()
setDepartureTime()
getDepartureTime()
totalTime()

Results of Ticket Counter Results of Ticket Counter
SimulationSimulation

6-23

1 2 3 4 5 6 7 8 9 10

5317 2325 1332 840 547 355 219 120 120 120

Number of
Cashiers

Average time
(in seconds)

Queue Implementation IssuesQueue Implementation Issues

• What do we need to implement a queue?
• A data structure (container) to
hold the data elements

• Something to indicate the front of
the queue

• Something to indicate the end of
the queue

6-24

Queue ImplementationQueue Implementation
Using a Linked ListUsing a Linked List

• Internally, the queue is represented as a
linked list of nodes, with each node
containing a data element

• We need two pointers for the linked list
• A pointer to the beginning of the linked list

(front of queue)
• A pointer to the end of the linked list (rear of

queue)
• We will also have a count of the number of

items in the queue

6-25

Linked Implementation of a Linked Implementation of a
QueueQueue

6-26

count
4

rear

front

.

A queue q containing four elements

q

• What if the queue is empty?

• What if there is only 1 element?

6-27

Discussion

Queue After Adding ElementQueue After Adding Element

6-28

count
5

rear

front

.

New element is added in a node at the end of the list,
rear points to the new node, and count is incremented

q

Queue After a Queue After a dequeuedequeue
OperationOperation

6-29

count
4

rear

front

Node containing is removed from the front of the list (see
previous slide), front now points to the node that was
formerly second, and count has been decremented.

.q

Java ImplementationJava Implementation
• The queue is represented as a linked

list of nodes:
• We will again use the LinearNode class
• front is a reference to the head of the

queue (beginning of the linked list)
• rear is a reference to the tail of the queue

(end of the linked list)
• The integer count is the number of nodes

in the queue

6-30

6-31

public class LinkedQueue<T> implements QueueADT<T>
{

/**
* Attributes
*/

private int count;
private LinearNode<T> front, rear;

/**
* Creates an empty queue.
*/

public LinkedQueue()
{

count = 0;
front = rear = null;

}

The LinkedQueue
class

6-32

//---
// Adds the specified element to the rear of the queue.
//---
public void enqueue (T element)
{

LinearNode<T> node = new LinearNode<T> (element);

if (isEmpty())
front = node;

else
rear.setNext (node);

rear = node;
count++;

}

The enqueue()
operation

6-33

//---
// Removes the element at the front of the queue and returns a
// reference to it. Throws an EmptyCollectionException if the
// queue is empty.
//---
public T dequeue () throws EmptyCollectionException
{

if (isEmpty())
throw new EmptyCollectionException ("queue");

T result = front.getElement();
front = front.getNext();
count--;
if (isEmpty())

rear = null;
return result;

}

The dequeue()
operation

Array Implementation of a Array Implementation of a
QueueQueue

• First Approach:
• Use an array in which index 0 represents one

end of the queue (the front)
• Integer value rear represents the next open

slot in the array (and also the number of
elements currently in the queue)

• Discussion: What is the challenge with
this approach?

6-34

An Array Implementation of An Array Implementation of
a Queuea Queue

6-35

rear
4

queue

0 4321

? …

A queue aq containing four elements

aq

front

Queue After Adding an ElementQueue After Adding an Element

6-36

rear
5

queue

0 4321
…

Element is added at the array location given by the
(old) value of rear, and then rear is incremented.

aq

Queue After Removing an ElementQueue After Removing an Element

6-37

rear
4

queue

0 4321
…

Element is removed from array location 0,
remaining elements are shifted forward one position
in the array, and then rear is decremented.

.
aq

Java Array ImplementationJava Array Implementation

• See ArrayQueue.java

6-38

6-39

public class ArrayQueue<T> implements QueueADT<T>
{

private final int DEFAULT_CAPACITY = 100;
private int rear;
private T[] queue;

public ArrayQueue()
{

rear = 0;
queue = (T[])(new Object[DEFAULT_CAPACITY]);

}
public ArrayQueue (int initialCapacity)

{
rear = 0;
queue = (T[])(new Object[initialCapacity]);

}

The ArrayQueue
class

6-40

//---
// Adds the specified element to the rear of the queue,
// expanding the capacity of the queue array if
// necessary.
//---
public void enqueue (T element)
{

if (size() == queue.length)
expandCapacity();

queue[rear] = element;
rear++;

}

The enqueue()
operation

6-41

//---
// Removes the element at the front of the queue and returns
// a reference to it. Throws anEmptyCollectionException if the
// queue is empty.
//---
public T dequeue () throws EmptyCollectionException
{

if (isEmpty())
throw new EmptyCollectionException ("queue");

T result = queue[0];
rear--;
// shift the elements
for (int i = 0; i < rear; i++)

queue[i] = queue[i+1];
queue[rear] = null;
return result;

}

The dequeue()
operation

Second Approach: Queue as Second Approach: Queue as
a a Circular ArrayCircular Array

• If we don't fix one end of the queue at
index 0, we won't have to shift elements

• Circular array is an array that
conceptually loops around on itself
• The last index is thought to “precede” index

0
• In an array whose last index is n, the location

“before” index 0 is index n; the location
“after” index n is index 0

• Need to keep track of where the front as
well as the rear of the queue are at any
given time 6-42

6-43

Conceptual Example of a Circular Queue

1
0

12
11

10

1
0

12
11

10

1
0

12
11

10

After 7 enqueues

front

rear

After 5
dequeues

front

rear

After 8 more enqueues

front

rear

Circular Array Circular Array
Implementation of a QueueImplementation of a Queue

6-44

rear

front

5

queue

count
8

3

0
1 2 3 4

5

6

7

8
910

n-1
n-2

n-3

. ..

cq

A Queue Straddling the End A Queue Straddling the End
of a Circular Arrayof a Circular Array

6-45

rear

front

4

queue

count
2

98

0
1 2 3 4

5

6

7

8
910

99
98

97

. ..

cq

Circular Queue Drawn LinearlyCircular Queue Drawn Linearly

6-46

rear

front

4

queue

count
2

98

0 4321 96 97 98 99…

Queue from previous slide

cq

Circular Array ImplementationCircular Array Implementation

• When an element is enqueued, the value
of rear is incremented

• But it must take into account the need to
loop back to index 0:

rear = (rear+1) % queue.length;

• Can this array implementation also reach
capacity?

6-47

Example: array of length 4Example: array of length 4
What happens? What happens?

6-48

rear

front

3

queue

count
1

2

0 321

rear

front

4

queue

count
2

2
0 321

Suppose we try to add
one more item to a
queue implemented by
an array of length 4

cq

cq

The queue is now full.
How can you tell?

Add another item!Add another item!
Need to expand capacity…Need to expand capacity…

6-49

rear

front

4

queue

count
2

2

0 321

rear

front

4

queue

count
2

2
0 321 4 765

We can’t just double
the size of the array:
circular properties of
the queue will be lost

These locations
should be in use

cq

cq

6-50

rear

front

4

queue

count
6

2

0 321 4 765

We could build the new array, and copy the queue elements
into contiguous locations beginning at location front:

cq

6-51

rear

front

4

queue

count
4

0
0 321 4 765

Better: copy the queue elements in order to the beginning
of the new array

cq

6-52

rear

front

5

queue

count
5

0
0 321 4 765

New element is added at rear = (rear+1) % queue.length

See expandCapacity() in CircularArrayQueue.java

cq

Analysis of Queue OperationsAnalysis of Queue Operations
• The linked implementation of a queue

does not suffer because of the need to
operate on both ends of the queue (why
not?)

• enqueue operation:
• O(1) for linked implementation
• O(n) for circular array implementation if need

to expand capacity, O(1) otherwise
• What about the noncircular array

implementation?

6-53

Analysis of Queue OperationsAnalysis of Queue Operations
• dequeue operation:

• O(1) for linked implementation
• O(1) for circular array
implementation

• O(n) for noncircular array
implementation (why?)

6-54

