
DATA STRUCTURES USING ‘C’

Data Structures

Introduction to Stacks

 Consider the following problems:

Problem 1:
For a poker game; on any turn, a player may discard
a single card from his hand to the top of the pile, or
he may retrieve the top card from the discard pile

Is there an appropriate data type to model this
discard pile???

Introduction to Stacks

Is there an appropriate data type to model this parking
lot???

Introduction to Stacks
 An algorithm converting 26 (11010) into base-two

representation

Introduction to Stacks
 Each problem involves a collection of related data items:
1. The basic operations are adding a card to and removing a

card from the top of discard pile
2. The basic operation are pushing a car onto the parking

lot and removing the last car previously placed on the
parking lot

3. We notice that the remainders are generated in reverse
order (right to left), therefore, they must be stored in
some structure so they can later be displayed in the
usual left-to-right order

Introduction to Stacks
 This type of last-in-first-out processing occurs in a

wide variety of applications
 This last-in-first-out (LIFO) data structure is called a

Stack

 Adding an item to a stack is referred to as pushing
that item onto the stack

 Removing an item from the stack is referred to as
popping the stack

Designing and Building a Stack
class
 The basic functions are:

 Constructor: construct an empty stack
 Empty(): Examines whether the stack is empty or not
 Push(): Add a value at the top of the stack
 Top(): Read the value at the top of the stack
 Pop(): Remove the value at the top of the stack
 Display(): Displays all the elements in the stack

Selecting storage structures
 Two choices

 Select position 0 as top of the stack
 Select position 0 as bottom of the stack

Select position 0 as top of the stack
 Model with an array

 Let position 0 be top of stack

 Problem … consider pushing and popping
 Requires much shifting

Select position 0 as bottom of the
stack

• A better approach is to let position 0 be the bottom of
the stack

• Thus our design will include
– An array to hold the stack elements
– An integer to indicate the top of the stack

Implementation of the
Operations

 Constructor:
Create an array: (int) array[capacity]
Set myTop = -1

 Empty():
check if myTop == -1

Implementation of the Operations
 Push(int x):

if array is not FULL (myTop < capacity-1)
myTop++
store the value x in array[myTop]

else
output “out of space”

Implementation of the
Operations

 Top():
If the stack is not empty

return the value in array[myTop]
else:

output “no elements in the stack”

Implementation of the Operations
 Pop():

If the stack is not empty
myTop -= 1

else:
output “no elements in the stack”

Further Considerations
 What if static array initially allocated for stack is too

small?
 Terminate execution?
 Replace with larger array!

 Creating a larger array
 Allocate larger array
 Use loop to copy elements into new array
 Delete old array

Linked Stacks
 Another alternative to allowing stacks to grow as

needed
 Linked list stack needs only one data member

 Pointer myTop
 Nodes allocated (but not

part of stack class)

Implementing Linked Stack Operations
 Constructor

 Simply assign null pointer to myTop
 Empty

 Check for myTop == null
 Push

 Insertion at beginning of list
myTop == new stack::Node(value, mytop)

 Top
 Return data to which myTop

points

Implementing Linked Stack Operations
• Pop

– Delete first node in the
linked list
ptr = myTop;
myTop = myTop->next;
delete ptr;

• Output
– Traverse the list
for (ptr = myTop;

ptr != 0; ptr = ptr->next)
out << ptr->data << endl;

C/C++ Standard library
 The C standard library (also known as libc) is a now-

standardized collection of header files and library
routines used to implement common operations, such
as input/output and string handling

 For example:
#include <iostream>

Vector
 Vectors contain contiguous elements stored as an

Dynamic array.

 All you have to do is include vector from library
#include <vector>

Vector Functions

Designing and Building a Stack
class
 The basic functions are:

 Constructor: construct an empty stack
 Empty(): Examines whether the stack is empty or not
 Push(): Add a value at the top of the stack
 Top(): Read the value at the top of the stack
 Pop(): Remove the value at the top of the stack
 Display(): Displays all the elements in the stack

Functions related to Stack
 Constructor: vector<int> L;
 Empty(): L.size() == 0?
 Push(): L.push_back(value);
 Top(): L.back();
 Pop(): L.pop_back();
 Display(): Write your own

A Small Example
#include <iostream>
#include <vector>
using namespace std;

char name[20];
int i, j, k;

int main()
{

vector<int> L;
L.push_back(1);
L.push_back(2);
L.push_back(3);
L.pop_back();

for(i=0;i<L.size();i++)
cout << L[i] << " ";

cout << L.back();

cin >> name;
}

Use of Stack in Function calls
 Whenever a function begins execution, an activation

record is created to store the current environment for
that function

 Current environment includes the
 values of its parameters,
 contents of registers,
 the function’s return value,
 local variables
 address of the instruction to which execution is to return when the

function finishes execution (If execution is interrupted by a call to
another function)

Use of Stack in Function calls
 Functions may call other functions and thus interrupt their

own execution, some data structure must be used to store
these activation records so they can be recovered and the
system can be reset when a function resumes execution

 It is the fact that the last function interrupted is the first
one reactivated

 It suggests that a stack can be used to store these activation
records

 A stack is the appropriate structure, and since it is
manipulated during execution, it is called the run-
time stack

Consider the following program
segment

int main(){
int a=3;
f1(a);
cout << endl;

}

Void f1(int x){
cout << f2(x+1);

}

Int f2(int p){
int q=f3(p/2);
return 2*q;

}

Int f3(int n){
return n*n+1;

}

Run-time Stack

 OS denotes that when execution of main() is completed, it
returns to the operating system

Use of Run-time Stack

When a function is called …
 Copy of activation record pushed onto run-time stack
 Arguments copied into parameter spaces
 Control transferred to starting address of body of function

