ATASTRUCTURES USING ‘C’

-
- Y W W W

Data Structures

Diifierent types or Serting

lechnicues useel in Data
STrUCTURES

Notes on Quicksort

Quicksort is more widely used than any other sort.

Quicksort is well-studied, not difficult to implement,
works well on a variety of data, and consumes fewer
resources that other sorts in nearly all situations.
Quicksort is O(n*log n) time, and O(log n) additional
space due to recursion.

Quicksort Algorithm

Quicksort is a divide-and-conguer method for sorting.
It works by partitioning an array into parts, then
sorting each part independently.

The crux of the problem is how to partition the array

such that the following conditions are true:

~There 1s some element, a[i1], where aJi]
IS In 1ts final position.

-For all 1 < 1, a[l] < a[l1].

—-For all 1 < r, a[i] < a[r].

P =
Quicksort Algorithm (cont)

As Is typical with a recursive program, once you figure out
how to divide your problem into smaller subproblems, the
Implementation is amazingly simple.
int partition(ltem a[], int I, iInt r);
void quicksort(ltem a[], int I, int r)
{ Int 1;
iIT (r <= 1) return;
1 = partition(a, I, r);
quicksort(a, 1, 1-1);
quicksort(a, 1+l, r);

}

Quicksort

Quicksort.
. Partition array so that:

- some partitioning element a [m] is inits final position
- no larger element to the left of m C. A.R. Hoare
- no smaller element to the right of m

partitioning
P> element

!

oglu|z|c|k|[s|o|rR|T|[I|s|c|o]|o ¥

I|cMo|u|s|/o|RrR|[T|S]|0]oO
<N

<L ﬁ > L

partitioned array

21

Quicksort

Quicksort.
. Partition array so that:
- some partitioning element a [m] is inits final position
- no larger element to the left of m
- no smaller element to the right of m

. Sort each "half" recursively. vartitioning

element

!

og|lu|z|c|k|[s|o|rR|T|[I|s|c|o]|o ¥

c ¢ I I K L 0O O 0 Q R S S T U

& Sort each "half." f]

S —_— . /

.
Partitioning in Quicksort

~ How do we partition the array efficiently?
choose partition element to be rightmost element
- scan from left for larger element
- scan from right for smaller element
- exchange
- repeat until pointers cross

Q|UJI|C|K|S|O|R|T|I]|S]|Cc|O0]|0O[iW

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
— How do we partition the array efficiently?

- choose partition element to be rightmost element
- scan from left for larger element
- scan from right for smaller element
- exchange
swap me - repeatuntil pointerscross

4
IEBJu|I [C|K|S|O|R|T]I]|S|Cc|Oo]|O0 N

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
— How do we partition the array efficiently?
- choose partition element to be rightmost element
- scan from left for larger element
- scan from right for smaller element

- exchange
swap me - repeatuntil pointerscross

4
IEBJu|l [C|K|S|Oo|R|T]I][S|c]|O [N

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
— How do we partition the array efficiently?
- choose partition element to be rightmost element
- scan from left for larger element
- scan from right for smaller element

- exchange
swap me - repeatuntil pointerscross

4
IEJu|l [C|K|S|O|R|T|I]S]|C S

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
— How do we partition the array efficiently?

- choose partition element to be rightmost element
- scan from left for larger element

- scan from right for smaller element

- exchange

swap me - repeatuntil pointerscross swap me

4 . 2
IBB U 1 [Cc|K[S|O|R|T]1I]S IEEEIE

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
— How do we partition the array efficiently?
- choose partition element to be rightmost element
- scan from left for larger element
- scan from right for smaller element

- exchange
- repeat until pointers cross

CIINEEEERNEEEEE 2 0 oL

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
— How do we partition the array efficiently?
- choose partition element to be rightmost element
- scan from left for larger element
- scan from right for smaller element

- exchange
swap medepeatuntil pointers cross

4
O ' [C [K[S[O[R[T[1]S ICHEHEIE

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
— How do we partition the array efficiently?
- choose partition element to be rightmost element
- scan from left for larger element
- scan from right for smaller element

- exchange
swap medepeatuntil pointers cross

4
C UVIDEEENEEREEE s 0 0 0L

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
— How do we partition the array efficiently?

- choose partition element to be rightmost element
- scan from left for larger element

- scan from right for smaller element

- exchange

swap medepeatuntil pointers cross swap me
4 2
OV | C | K| S| O | R | T [EuscHuoieioi =

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
— How do we partition the array efficiently?
- choose partition element to be rightmost element
- scan from left for larger element
- scan from right for smaller element

- exchange
- repeat until pointers cross

C 1 IHNNEEREEE Y s 0 0 0L

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
— How do we partition the array efficiently?

- choose partition element to be rightmost element
- scan from left for larger element

- scan from right for smaller element

- exchange

- repeat until pointers cross

O NN C K| S| O | R | T HUSESTNORNOENCE S

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
— How do we partition the array efficiently?

- choose partition element to be rightmost element
- scan from left for larger element

- scan from right for smaller element

- exchange

- repeat until pointers cross

C I I CuraunEamamE U S QO O O L

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
e How do we partition the array efficiently?
« choose partition element to be rightmost element
« scan from left for larger element

« scan from right for smaller element
« Exchange and repeat until pointers cross

C I 1 C KpEBEamamEe U S Q O O L

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
e How do we partition the array efficiently?

« choose partition element to be rightmost element
« scan from left for larger element

« scan from right for smaller element

« Exchange and repeat until pointers cross

swap me

4
C 1 1 C K SINEEEBUV S Q 0 0 L

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
e How do we partition the array efficiently?

« choose partition element to be rightmost element
« scan from left for larger element

« scan from right for smaller element

« Exchange and repeat until pointers cross

swap me

4
C 1 I C K SJBESET US Q 0 0 L

- partition element unpartitioned - left

- partitioned - right

Partitioning in Quicksort
— How do we partition the array efficiently?

- choose partition element to be rightmost element
- scan from left for larger element

- scan from right for smaller element

- Exchange and repeat until pointers cross

swap me

4
C I 1 ¢ KSR T U S Q O O L

- partition element unpartitioned - left

- partitioned - right

S —_— . /

.
Partitioning in Quicksort

— How do we partition the array efficiently?
- choose partition element to be rightmost element
- scan from left for larger element

- scan from right for smaller element
- Exchange and repeat until pointers cross

swap me

4
C I I CKSORTUWUSZ QO O L

- partition element unpartitioned - left

- partitioned - right

S —_— . /

.
Partitioning in Quicksort

e How do we partition the array efficiently?

« choose partition element to be rightmost element

« scan from left for larger element

« scan from right for smaller element

« Exchange and repeat until pointers cross swap with
pointers Cross partitioning

% element

C 1 1 ¢ KO R T U S Q O O L

- partition element unpartitioned - left

- partitioned - right

S —_— . /

.
Partitioning in Quicksort

— How do we partition the array efficiently?
- choose partition element to be rightmost element
- scan from left for larger element

- scan from right for smaller element
- Exchange and repeat until pointers cross

partition is
complete

C 1 I C KLOU RTUSTZ QT OO S

- partition element unpartitioned - left

- partitioned - right

—

Quicksort Demo

Illustrates the operation of the basic
algorithm. When the array Is partitioned, one element
IS In place on the diagonal, the left subarray has its
upper corner at that element, and the right subarray
has Its lower corner at that element. The original file Is
divided into two smaller parts that are sorted
Independently. The left subarray Is always sorted first,
so the sorted result emerges as a line of black dots
moving right and up the diagonal.

e _
Why study Heapsort?
It Is a well-known, traditional sorting
algorithm you will be expected to know

Heapsort is always O(n log n)

e Quicksort is usually O(n log n) but in the
worst case slows to O(n?)

e Quicksort is generally faster, but Heapsort is
better in time-critical applications

== (e .
What is a “heap”?
Definitions of heap:

1. A large area of memory from which the
programmer can allocate blocks as
needed, and deallocate them (or allow
them to be garbage collected) when no
longer needed

2. A balanced, left-justified binary tree in
which no node has a value greater than
the value In its parent

Heapsort uses the second definition

.
Balanced binary trees

e Recall:

e Thedepth of a node is its distance from the root
e Thedepth of a tree is the depth of the deepest node
* Abinary tree of depth is balanced if all the nodes at depths through have two

children
/\ /\ /\ /\ /\

- - 666656

Balanced Balanced Not balanced

Left-justified binary trees

A balanced binary tree is left-justified If:
—all the leaves are at the same depth, or
—all the leaves at depth are to the left of all

the nodes at depth
- -
O/O\ O O/O\O O/O\ O O/O\O
S5 06 06 50 508 60

Left-justified Not left-justified

The heap property =

A node has the heap property if the value In
the node Is as large as or larger than the
values in its children

ofoJoRcJoRo

Blue node has Blue node has Blue node does not
heap property heap property have heap property

All leaf nodes automatically have the heap property

A binary tree Is a heap If all nodes In it have the heap
property

.

Given a node that does not have the heap property,
you can give it the heap property by exchanging its
value with the value of the larger child

-
-
Blue node has
(14)
Blue node does not heap property
have heap property

This Is sometimes called sifting up

Notice that the child may have lost the heap
property

“Constructing a heap |

® A tree consisting of a single node is automatically a heap

* We construct a heap by adding nodes one at a time:
e Add the node just to the right of the rightmost node in the deepest level
o |f the deepest level is full, start a new level

* Examples:

/

Constructing a heap |l

» Each time we add a node, we may destroy the heap property of its parent node

e Tofix this, we sift up
* Buteach time we sift up, the value of the topmost node in the sift may increase, and this
may destroy the heap property of its parent node

* We repeat the sifting up process, moving up in the tree, until either

* We reach nodes whose values don't need to be swapped (because the parent is still
larger than both children), or

e \We reach the root

/

Constructing a heap Il
"
(10) o ¢ &

PN A

| Other children are not affected

@ @ ‘@

The node containing 8 is not affected because its parent gets
larger, not smaller

The node containing 5 is not affected because its parent gets larger,
not smaller

The node containin_% 8 is still not affected because, although its
parent got smaller, its parent is still greater than it was originally

=
Asample heap
Here’s a sample binary tree after it has been heapified
(25
(22)

= ®

Gs) G4 QU (3 (o) Qo

Notice that heapified does not mean sorted

Heapifying does not change the shape of the binary
tree; this binary tree is balanced and left-justified
because it started out that way

Removing the root
Notice that the largest number is now in the root
Suppose we discard the root:

(1D
(22,
-

© 5 ®
=

How can we fix the binary tree so It is once again
balanced and left-justified?

Solution: remove the rightmost leaf at the deepest
level and use it for the new root

Our tree is balanced and left-justified, but no longer a heap
However, only the root lacks the heap property

= ®

- -

We can the root

After doing this, one and only one of its children may have
lost the heap property

e « method] -

Now the left child of the root (still the number)
lacks the heap property

= ®

- -

We can this node

After doing this, one and only one of its children
may have lost the heap property

the method i =

Now the right child of the left child of the root (still the
number) lacks the heap property:

(22)
(22,

el ®

- -

We can this node

After doing this, one and only one of its children may
have lost the heap property —but it doesn’t, because it’s
a leaf

/

- ‘/-/

The method IV

Our tree Is once again a heap, because every node in it
has the heap property

(22)
(22,

2} ®

- -

Once again, the largest (or a largest) value is in the root
We can repeat this process until the tree becomes empty

This produces a sequence of values in order largest to
smallest

/, e AN e

s

sorting

What do heaps have to do with sorting an array?

Here's the neat part:

— Because the binary tree is balanced and left justified, it
can be represented as an array

—All our operations on binary trees can be represented as
operations on arrays

— To sort:;

“Mapping into an array

(22,

QQ @@@ @@ =

T2l e b e v 8 g 0 e 9
25|22117|19|22|14|15|18|14|21| 3 | 9 |11

Notice:

—The left child of index is at index

— The right child of index is at index

— Example: the children of node (19) are (18) and

/’

(14)

““Removing and replacing the root

The “root” is the first element in the array

The “rightmost node at the deepest level” is the last element
Swap them...

O 12 3 4B 6 B 01011 1D
25|22117|19|22|14|15|18|14|21| 3 | 9 |11

Ol e s s b B g e RO
11|22|17|19|22|14|15|18|14|21| 3 | 9 |25

...And pretend that the last element in the array no longer
exists—that is, the “last index” is (9)

Reheap and repeat

Reheap the root node (index 0, containing)...

Qv 2 B s S e B O Qs 1D
11(22117(19(22|114(15|18(14 |21 9 25
2 o B gG 11 12
22122(17119(|21(14|115(18(14 11| 3 | 9 |25
8 e e e S e S SR S e e) 11%12
9 |122(17(19|22(14|15|18(14|21| 3 |22

25

...And again, remove and replace the root node
Remember, though, that the “last” array index is changed
Repeat until the last becomes first, and the array is sorted!

// =
Analysis |
Here's how the algorithm starts:

Heapifying the array: we add each of nodes
e Each node has to be sifted up, possibly as far as the

root
« Since the binary tree is perfectly balanced, sifting up a
single node takes time

e Since we do this times, heapifying takes
time, that is, time

//7 . = =
Analysis |

Here’s the rest of the algorithm:

We do the while loop times (actually, times),
because we remove one of the nodes each time

Removing and replacing the root takes time

Therefore, the total time is times however long It
takes the method

— %

Analysis Il

To reheap the root node, we have to follow one path
from the root to a leaf node (and we might stop before
we reach a leaf)

The binary tree is perfectly balanced

Therefore, this path is long
—And we only do operations at each node
— Therefore, reheaping takes times

Since we reheap inside a while loop that we do times,
the total time for the while loop is , or

Analysis IV

_\\

Here’s the algorithm again:

We have seen that heapifying takes

T
T
T

ne while loop takes time
ne total time is therefore

NIS IS the same as time

time

N

The End

= Shell Sort: Idea

Donald Shell (1959): Exchange items that are far apart!
Original:

5-sort: Sort items with distance 5 element:

. ShellSort: Example—

Original:

After 5-sort:

0] 0[-1]43]3[a2]2]1]58]3]65]4

After 3-sort:
2|1 0 1]|-1]13 |1 |4 140| 3 (42|43 |65/(58

After 1-sort:

Shell Sort: Gap Values
Gap: the distance between items being
sorted.

As we progress, the gap decreases. Shell
Sort is also called Diminishing Gap Sort.

Shell proposed starting gap of N/2,
halving at each step.

There are many ways of choosing the next
gap.

Insertion Shellsort
Sort Shell's Odd Gaps Only Dividing by 2.2

122 11 11 9

483 26 21 23

1936 61 59 54
7950
32560
131911
520000

O(N372)? O(N5/4)? O(N7/6)?

So we have 3 nested loops, but Shell Sort is still better
than Insertion Sort! Why?

/ vy e A
Generic Sort

So far we have methods to sort integers. What about
Strings? Employees? Cookies?
A new method for each class? No!

In order to be sorted, objects should be comparable
(less than, equal, greater than).

Solution:

—use an that has a method to compare two
objects.

Remember:

Other kinds of sort

» Heap sort. We will discuss this after tree.
* Postman sort / Radix Sort.
* etc.

