ATASTRUCTURES USING ‘C’

Lecture-11
Data Structures

fsadaco]

i

gesicrod

Selection Sort: ldea

1. We have two group of items:

— sorted group, and

— unsorted group
Initially, all items are in the unsorted group.

The sorted group is empty.
We assume that items in the unsorted group

unsorted.
We have to keep items in the sorted group sorted.

2.

Selection Sort: Cont’d

1. Select the “best” (eg. smallest) item from the
unsorted group, then put the “best” item at
the end of the sorted group.

2. Repeat the process until the unsorted group
becomes empty.

Selection Sort

Comparison

Data Movement

Selection Sort

Comparison

Data Movement

Selection Sort

Comparison

Data Movement

Selection Sort

Comparison

Data Movement

Selection Sort

Comparison

Data Movement

Selection Sort

Comparison

Data Movement

Selection Sort

Comparison

Data Movement

Selection Sort

S| 1 3 4|6

T
Largest

Comparison

Data Movement

Selection Sort

Comparison

Data Movement

orted

Selection Sort

Comparison

Data Movement

orted

Selection Sort

Comparison

Data Movement

orted

Selection Sort

Comparison

Data Movement

orted

Selection Sort

Comparison

Data Movement

orted

Selection Sort

Comparison

Data Movement

orted

Selection Sort

Comparison

Data Movement

orted

Selection Sort

S| 1 3

T
Largest

Comparison

Data Movement

orted

Selection Sort

Comparison

Data Movement

~g0/ted

Selection Sort

Comparison

Data Movement

orted

Selection Sort

Comparison

Data Movement

~g0!ted

Selection Sort

Comparison

Data Movement

~g0rted

Selection Sort

Comparison

Data Movement

~30!ted

Selection Sort

Comparison

Data Movement

~g0rted

Selection Sort

Comparison

Data Movement

~g0rted

Selection Sort

Comparison

Data Movement

~g0rted

Selection Sort

Comparison

Data Movement

~30!ted

Selection Sort

Comparison

Data Movement

~30rted

Selection Sort

Comparison

Data Movement

orted

Selection Sort

Comparison

Data Movement

~g0/ted

Selection Sort

Comparison

Data Movement

orted

Selection Sort

Comparison

Data Movement

orted

Selection Sort

omparison

Data Movement

i v“:u‘:u e ‘: g ‘:,‘. " R

Selection Sort

Comparison

Data Movement

i

e

e

e

Selection Sort

omparison

Data Movement

Sy
G

Selection Sort

Largest

Comparison

Data Movement

ey

%

SoR

Selection Sort

omparison

Data Movement

et 8
e

e
Ssogcecgis o

Selection Sort

DONE!

Comparison

Data Movement

Selection Sort: Example

election Sort: Example

election Sort: Example

Selection Sort: Analysis

» Running time:

> Worst case: O(N?)
> Best case: O(N?)

Insertion Sort: ldea

» Idea: sorting cards.
-8 1 59 2 6 3

58] 926 3
589] 26 3
2589] 6 3
25689 3
2356809 |

Insertion Sort: ldea

1. We have two group of items:
— sorted group, and
— unsorted group
2. Initially, all items in the unsorted group and the
sorted group Is empty.
— We assume that items in the unsorted group unsorted.
— We have to keep items in the sorted group sorted.
3. Pick any item from, then insert the item at the
right position in the sorted group to maintain
sorted property.

4. Repeat the process until the unsorted group
becomes empty.

Insertion Sort: Example

Insertion Sort: Example

Insertion Sort: Example

Insertion Sort: Example

Insertion Sort: Analysis

» Running time analysis:

> Worst case: O(N?)
> Best case: O(N)

A Lower Bound

» Bubble Sort, Selection Sort, Insertion Sort all
have worst case of O(N?).

» Turns out, for any algorithm that exchanges
adjacent items, this is the best worst case:
Q(N>?)

» In other words, this is a lower bound!

Mergesort

»Mergesort (divide-and-conquer)
- Divide array into two halves.

A[L[G|O]R L[TIHIM[S] 4uide

Mergesort

rMergesort (divide-and-conquer)

- Divide array into two halves.
- Recursively sort each half.

AlL[G[O[R L[TITHIM]S] givide

A GIL|O|R H I M| S|T sort

Mergesort

rMergesort (divide-and-conquer)

- Divide array into two halves.

- Recursively sort each half.

- Merge two halves to make sorted whole.

AlL[G[O[R L[TITHIM]S] givide

A GIL|O|R H I M| S|T sort

M| IO R|S|T merge

Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
° Repeat until done.

smallest smallest
1 | |
A|IG|L|O|R Hi 1T | M|S|T

auxiliary array

Merging

»Merge.
- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
> Repeat until done.

smallest smallest
1 | |
A|IG|L|O|R H I | M

A

auxiliary array

Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
° Repeat until done.

smallest smallest
1 | |
A|IG|L|O|R H I | M

Alc N

auxiliary array

Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
° Repeat until done.

smallest smallest
1 | |
A|IG|L|O|R Hi 1T | M|S|T

auxiliary array

Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
° Repeat until done.

smallest smallest
1 | |
A|IG|L|O|R H I | M

auxiliary array

Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
° Repeat until done.

smallest smallest
1 | |
A|IG|L|O|R Hi 1T | M|S|T

auxiliary array

Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
° Repeat until done.

smallest smallest
1 | |
A|IG|L|O|R Hi 1T | M|S|T

auxiliary array

Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.

° Repeat until done.

smallest

1

AlG|L|O

R

smallest

1

S

auxiliary array

Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
> Repeat until done.

first half

exhausted smallest

1

AlG| L|O|R H{ T M|S|T

auxiliary array

Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
° Repeat until done.

first half
exhausted smallest
[| |
A[G[L]O[R HIP | M|S|T

O|R[S]

auxiliary array

