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Selection Sort: ldea

1. We have two group of items:

— sorted group, and

— unsorted group
Initially, all items are in the unsorted group.

The sorted group is empty.
We assume that items in the unsorted group

unsorted.
We have to keep items in the sorted group sorted.

2.




Selection Sort: Cont’d

1. Select the “best” (eg. smallest) item from the
unsorted group, then put the “best” item at
the end of the sorted group.

2. Repeat the process until the unsorted group
becomes empty.
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Selection Sort: Example
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Selection Sort: Analysis

» Running time:

> Worst case: O(N?)
> Best case: O(N?)




Insertion Sort: ldea

» Idea: sorting cards.
-8 1 59 2 6 3
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Insertion Sort: ldea

1. We have two group of items:
— sorted group, and
— unsorted group
2. Initially, all items in the unsorted group and the
sorted group Is empty.
— We assume that items in the unsorted group unsorted.
— We have to keep items in the sorted group sorted.
3. Pick any item from, then insert the item at the
right position in the sorted group to maintain
sorted property.

4. Repeat the process until the unsorted group
becomes empty.
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Insertion Sort: Analysis

» Running time analysis:

> Worst case: O(N?)
> Best case: O(N)




A Lower Bound

» Bubble Sort, Selection Sort, Insertion Sort all
have worst case of O(N?).

» Turns out, for any algorithm that exchanges
adjacent items, this is the best worst case:
Q(N>?)

» In other words, this is a lower bound!
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Mergesort

rMergesort (divide-and-conquer)

- Divide array into two halves.

- Recursively sort each half.

- Merge two halves to make sorted whole.

AlL[G[O[R L[ TITHIM]S]  givide

A GIL|O|R H I M| S|T sort

M| IO  R|S|T merge




Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
° Repeat until done.

smallest smallest
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Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.

° Repeat until done.

smallest
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Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
> Repeat until done.
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Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
° Repeat until done.

first half
exhausted smallest
[ | |
A[G[L]O[R HIP | M|S|T

O|R[S ]

auxiliary array



