
DATA STRUCTURES USING ‘C’

Lecture No.01

Data Structures

1. Reinforce the concept that costs and
benefits exist for every data structure.

2. Learn the commonly used data structures.
 These form a programmer's basic data structure

“toolkit”.

3. Understand how to measure the cost of a
data structure or program.
 These techniques also allow you to judge the

merits of new data structures that you or others
might invent.

 Data structures organize data  more
efficient programs.

 More powerful computers  more
complex applications.

 More complex applications demand more
calculations.

 Prepares the students for (and is a
prerequisite for) the more advanced
material students will encounter in later
courses.

 Cover well-known data structures such as
dynamic arrays, linked lists, stacks,
queues, tree and graphs.

 Implement data structures in C++

 Prepares the students for (and is a
prerequisite for) the more advanced
material students will encounter in later
courses.

 Cover well-known data structures such as
dynamic arrays, linked lists, stacks,
queues, tree and graphs.

 Implement data structures in C++

 Any organization for a collection of
records that can be searched, processed
in any order, or modified.

 The choice of data structure and algorithm
can make the difference between a
program running in a few seconds or
many days.

 A solution is said to be efficient if it solves
the problem within its resource
constraints.
 Space
 Time

 The cost of a solution is the amount of
resources that the solution consumes.

Select a data structure as follows:
1. Analyze the problem to determine the

resource constraints a solution must
meet.

2. Determine the basic operations that must
be supported. Quantify the resource
constraints for each operation.

3. Select the data structure that best meets
these requirements.

 Each data structure has costs and
benefits.

 Rarely is one data structure better than
another in all situations.

 A data structure requires:
 space for each data item it stores,
 time to perform each basic operation,
 programming effort.

 Elementary data structure that exists as
built-in in most programming languages.

main(int argc, char** argv)
{

int x[6];
int j;
for(j=0; j < 6; j++)

x[j] = 2*j;
}

 Array declaration: int x[6];
 An array is collection of cells of the same

type.
 The collection has the name ‘x’.
 The cells are numbered with consecutive

integers.
 To access a cell, use the array name and

an index:
x[0], x[1], x[2], x[3], x[4], x[5]

x[1]

x[2]

x[3]

x[4]

x[5]

x[0]
Array cells are
contiguous in
computer memory

The memory can be
thought of as an
array

 ‘x’ is an array name but there is no variable x. ‘x’ is not an lvalue.
 For example, if we have the code

int a, b;

then we can write

b = 2;
a = b;
a = 5;

But we cannot write

2 = a;

 ‘x’ is an array name but there is no variable x. ‘x’ is not an lvalue.
 For example, if we have the code

int a, b;

then we can write

b = 2;
a = b;
a = 5;

But we cannot write

2 = a;

 ‘x’ is not an lvalue

int x[6];
int n;

x[0] = 5;
x[1] = 2;

x = 3; // not allowed
x = a + b; // not allowed
x = &n; // not allowed

 You would like to use an array data structure
but you do not know the size of the array at
compile time.

 You find out when the program executes that
you need an integer array of size n=20.

 Allocate an array using the new operator:

int* y = new int[20]; // or int* y = new int[n]
y[0] = 10;
y[1] = 15; // use is the same

 ‘y’ is a lvalue; it is a pointer that holds the address
of 20 consecutive cells in memory.

 It can be assigned a value. The new operator
returns as address that is stored in y.

 We can write:

y = &x[0];
y = x; // x can appear on the right

// y gets the address of the
// first cell of the x array

 We must free the memory we got using
the new operator once we are done with
the y array.

delete[] y;

 We would not do this to the x array
because we did not use new to create it.

 The List is among the most generic of
data structures.

 Real life:

a. shopping list,
b. groceries list,
c. list of people to invite to dinner
d. List of presents to get

 A list is collection of items that are all of
the same type (grocery items, integers,
names)

 The items, or elements of the list, are
stored in some particular order

 It is possible to insert new elements into
various positions in the list and remove
any element of the list

 List is a set of elements in a linear order.
For example, data values a1, a2, a3, a4can be arranged in a list:

(a3, a1, a2, a4)

In this list, a3, is the first element, a1 is the
second element, and so on

 The order is important here; this is not
just a random collection of elements, it is
an ordered collection

Useful operations
 createList(): create a new list (presumably empty)
 copy(): set one list to be a copy of another
 clear(); clear a list (remove all elments)
 insert(X, ?): Insert element X at a particular position

in the list
 remove(?): Remove element at some position in

the list
 get(?): Get element at a given position
 update(X, ?): replace the element at a given position

with X
 find(X): determine if the element X is in the list
 length(): return the length of the list.

 We need to decide what is meant by
“particular position”; we have used “?” for
this.

 There are two possibilities:

1. Use the actual index of element: insert after
element 3, get element number 6. This
approach is taken by arrays

2. Use a “current” marker or pointer to refer to a
particular position in the list.

 If we use the “current” marker, the
following four methods would be useful:

 start(): moves to “current” pointer to the very
first element.

 tail(): moves to “current” pointer to the very
last element.

 next(): move the current position forward one
element

 back(): move the current position backward
one element

