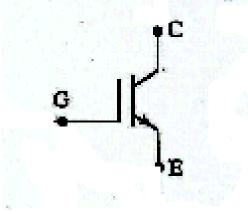
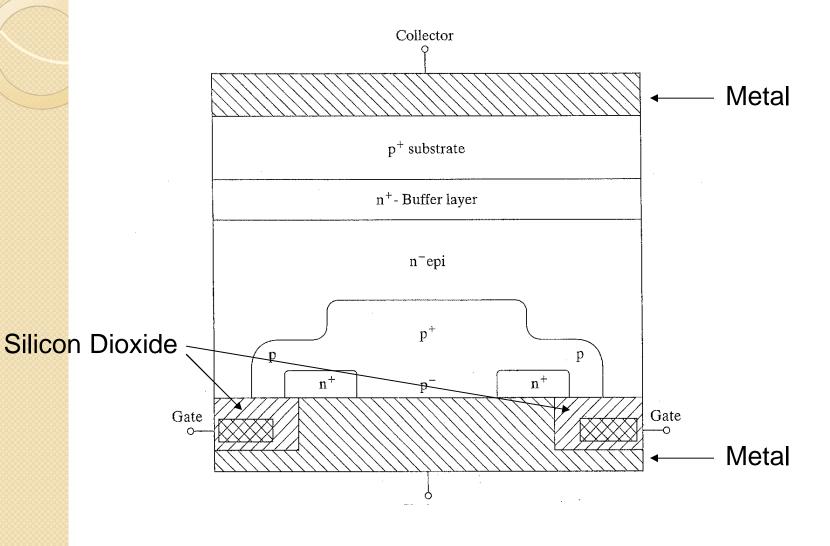
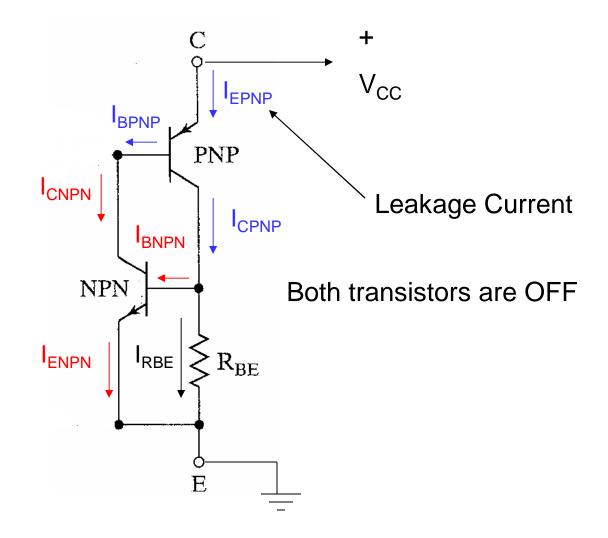
LECTURE 24

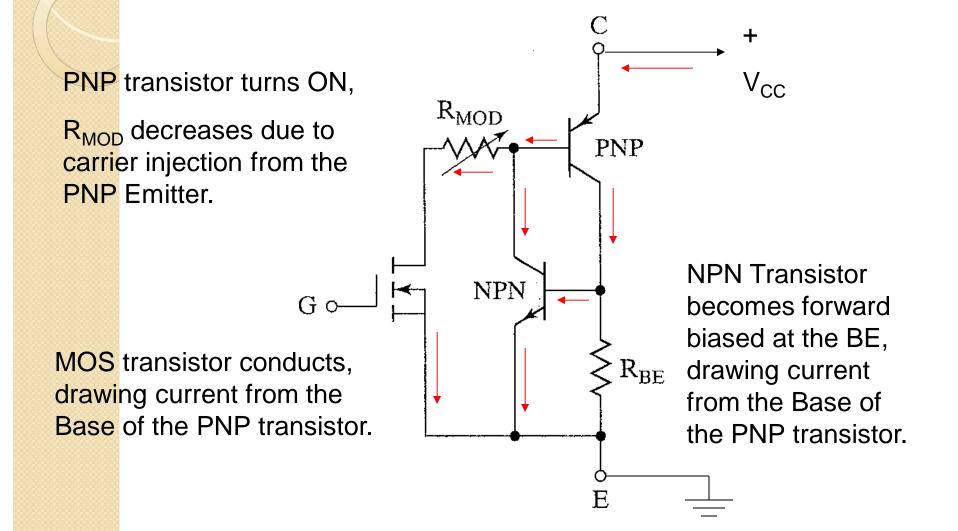

IGBT

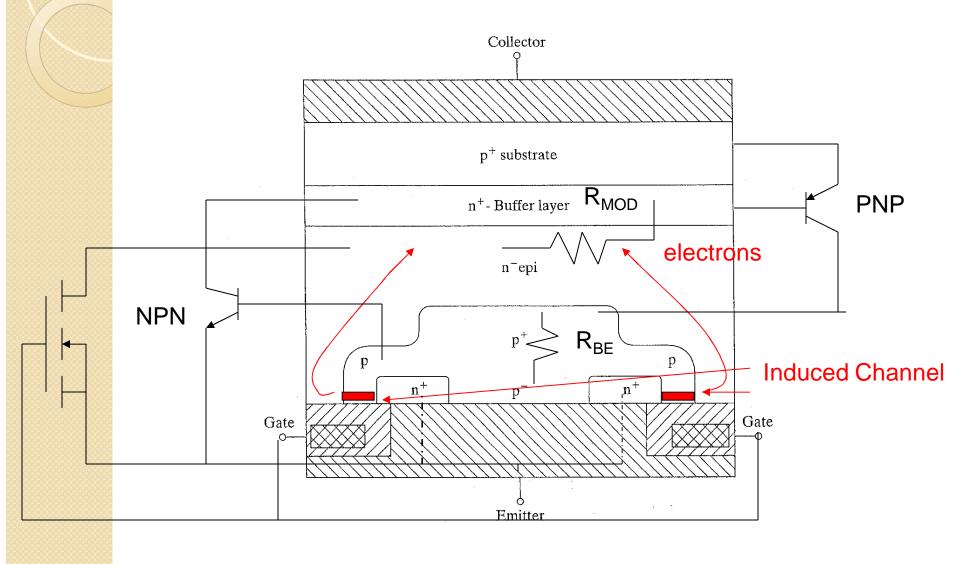
Topics to be covered

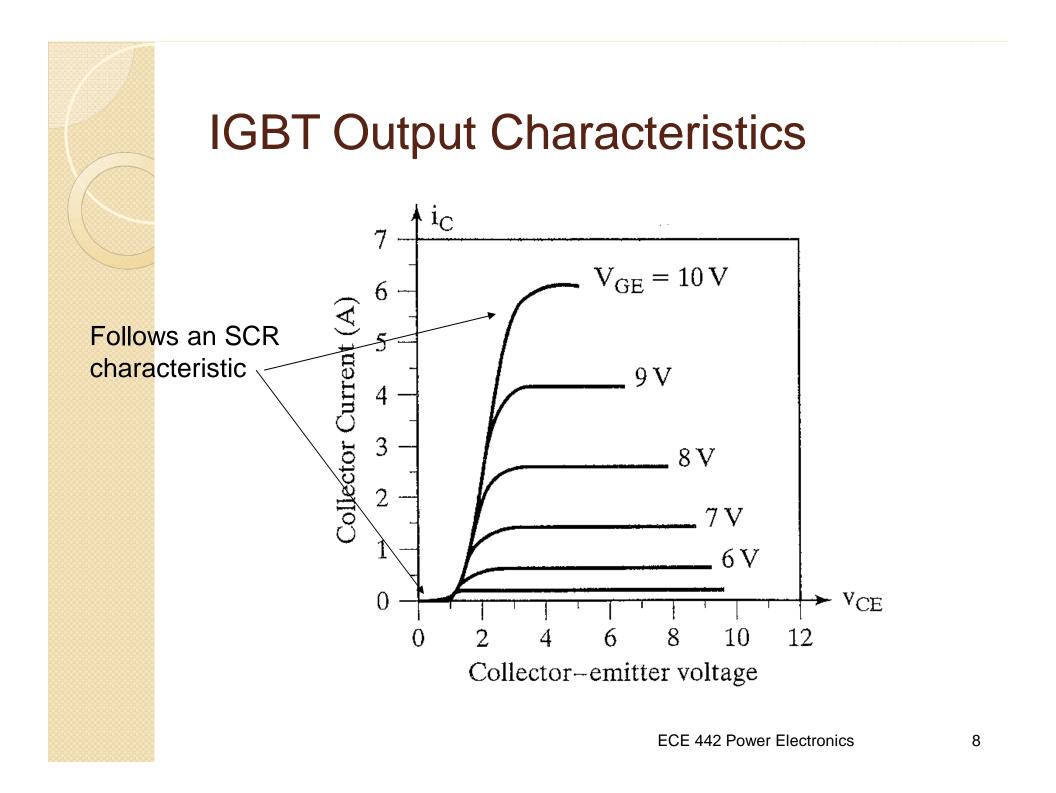

• Electrorestriction

IGBT: Insulated-Gate Bipolar Transistor

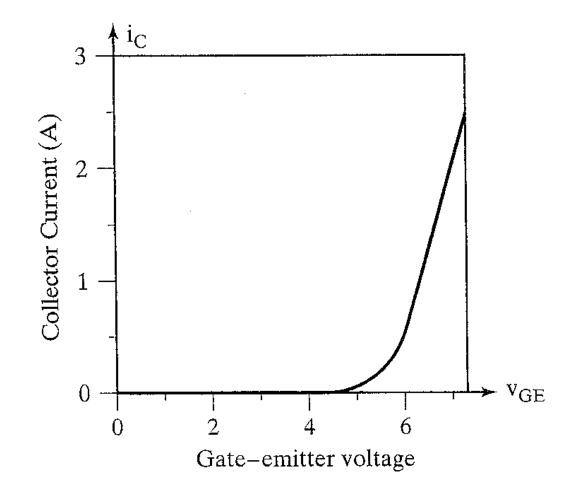

- Combination BJT and MOSFET
 - High Input Impedance (MOSFET)
 - Low On-state Conduction Losses (BJT)
- High Voltage and Current Ratings
- Symbol

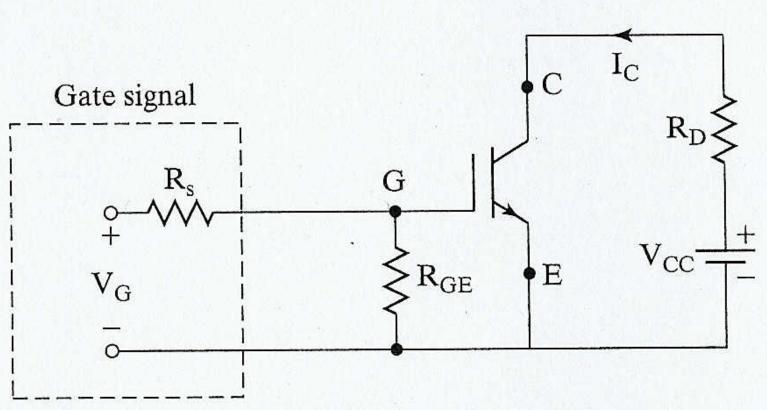

Cross-Sectional View of an IGBT


IGBT Equivalent Circuit for $V_{GE} < V_T$



IGBT Equivalent Circuit for $V_{GE} > V_T$


Channel is Induced When $V_{GE} > V_T$



IGBT Transfer Characteristic

IGBT Used as a Switch

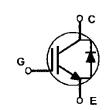
Fairchild FGA25N120AND IGBT

FGA25N120AND

General Description

Employing NPT technology, Fairchild's AND series of IGBTs provides low conduction and switching losses. The AND series offers an solution for application such as induction heating (IH), motor control, general purpose inverters and uninterruptible power supplies (UPS).

Features


- High speed switching
- Low saturation voltage : V_{CE(sat)} = 2.5 V @ I_C = 25A
- High input impedance
- CO-PAK, IGBT with FRD : t_{rr} = 235ns (typ.)

Applications

Induction Heating, UPS, AC & DC motor controls and general purpose inverters.

TO-3P

GCE

IGBT

Symbol	Description		FGA25N120AND	Units	
V _{CES}	Collector-Emitter Voltage		1200	V	
V _{GES}	Gate-Emitter Voltage		± 20	V	
-	Collector Current	@ T _C = 25°C	40	A	
I _C	Collector Current	@ T _C = 100°C	25	A	
¹ CM (1)	Pulsed Collector Current		75	A	
l _F	Diode Continuous Forward Current	@ T _C = 100°C	25	A	
IFM	Diode Maximum Forward Current		150	A	
P _D	Maximum Power Dissipation	@ T _C = 25°C	310	W	
	Maximum Power Dissipation	@ T _C = 100°C	125	W	
Тј	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range	· · · · · · · · · · · · · · · · · · ·	-55 to +150	°C	
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 second	IS	300	°C	

Absolute Maximum Ratings T_c = 25°C unless otherwise noted

Notes :

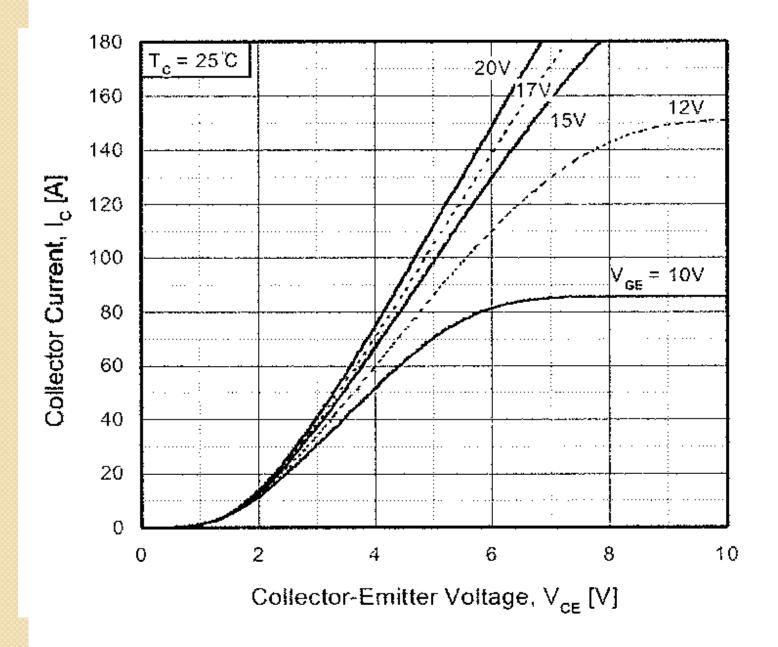
(1) Repetitive rating : Pulse width limited by max. junction temperature

Thermal Characteristics

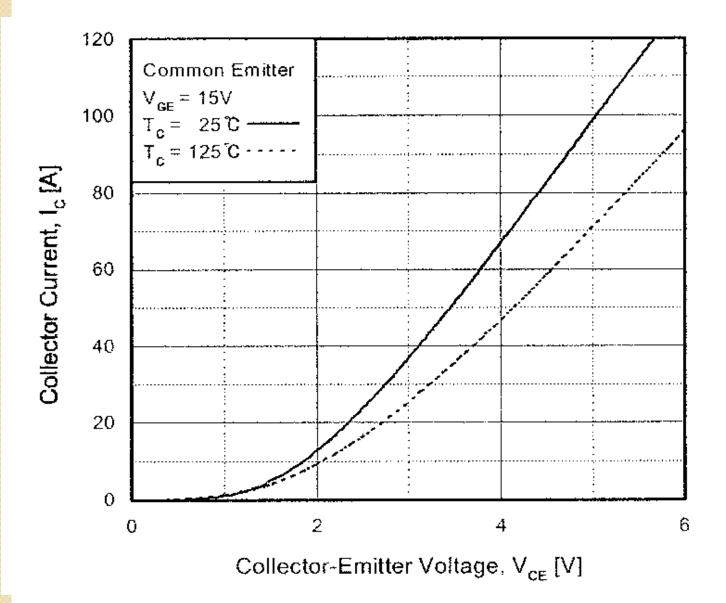
Symbol	Parameter	Тур.	Max.	Units
R _{θJC} (IGBT)	Thermal Resistance, Junction-to-Case		0.4	°C/W
R _{0JC} (DIODE)	Thermal Resistance, Junction-to-Case		2.0	°C/W
R _{θJA}	Thermal Resistance, Junction-to-Ambient		40	°C/W

©2003 Fairchild Semiconductor Corporation

FGA25N120AND Rev. A


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V, I_C = 3mA$	1200			V
$\Delta B_{VCES}/\Delta T_{J}$	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0V, I _C = 3mA		0.6		V/°C
ICES	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$		-+	3	mA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nA
On Cha	ractoristics					
On Cha	racteristics					
	G-E Threshold Voltage	I _C = 25mA, V _{CE} = V _{GE}	3.5	5.5	7.5	V
	G-E Threshold Voltage	I _C = 25A. V _{GE} = 15V	3.5	5.5 2.5	7.5 3.2	V V
V _{GE(th)}	G-E Threshold Voltage Collector to Emitter	$I_{C} = 25A$. $V_{GE} = 15V$ $I_{C} = 25A$. $V_{GE} = 15V$,		2.5		V
V _{GE(th)} V _{CE(sat)}	G-E Threshold Voltage Collector to Emitter	$I_{C} = 25A$. $V_{GE} = 15V$ $I_{C} = 25A$. $V_{GE} = 15V$, $T_{C} = 125^{\circ}C$		2.5 2.9	3.2	V V
V _{GE(th)} V _{CE(sat)} Dynami	G-E Threshold Voltage Collector to Emitter Saturation Voltage	$I_{C} = 25A.$ $V_{GE} = 15V$ $I_{C} = 25A.$ $V_{GE} = 15V.$ $T_{C} = 125^{\circ}C$ $I_{C} = 40A.$ $V_{GE} = 15V$		2.5 2.9	3.2	V V
V _{GE(th)} V _{CE(sat)}	G-E Threshold Voltage Collector to Emitter Saturation Voltage c Characteristics	$I_{C} = 25A$. $V_{GE} = 15V$ $I_{C} = 25A$. $V_{GE} = 15V$, $T_{C} = 125^{\circ}C$		2.5 2.9 3.1	3.2	V V V

Switching	Characteristics
-----------	-----------------


t _{d(on)}	Turn-On Delay Time		 60		ns
t _r	Rise Time		 60		ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 600 \text{ V}, \text{ I}_{C} = 25 \text{ A},$	 170		ns
	Fall Time	$R_{G} = 10\Omega, V_{GE} = 15V,$	 45	90	ns
t _f E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 25°C	 4.8	7.2	mJ
E _{off} E _{ts}	Turn-Off Switching Loss		 1.0	1.5	mJ
E _{ts}	Total Switching Loss		 5.7	8.7	mJ
t _{d(on)}	Turn-On Delay Time		 60		ns
t _r	Rise Time		 60		ns
t _{d(off)}	Turn-Off Delay Time	$V_{\rm CC} = 600 \text{ V}, I_{\rm C} = 25 \text{ A},$	 180		ns
t _f	Fall Time	$R_{G} = 10\Omega, V_{GE} = 15V,$	 70		ns
Eon	Turn-On Switching Loss	Inductive Load, T _C = 125°C	 5.5		mJ
Eoff	Turn-Off Switching Loss		 1.4		mJ
E _{ts}	Total Switching Loss		 6.9		mJ
Qq	Total Gate Charge	$V_{CE} = 600 \text{ V}, \text{ I}_{C} = 25\text{ A},$	 200	300	nC
E _{off} E _{ts} Q _g Q _{ge} Q _{gc}	Gate-Emitter Charge		 15	23	nC
Q _{gc}	Gate-Collector Charge	V _{GE} = 15V	 105	160	nC
L _e	Internal Emitter Inductance	Measured 5mm from PKG	 14		nH

Electrical Characteristics of DIODE $T_{C} = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Units
	Diode Forward Voltage	I _F = 25A	T _C = 25°C		2.0	3.0	v
V _{FM}			T _C = 125°C		2.1		
	Diode Reverse Recovery Time	l _F = 25A dl/dt = 200 A/μs	$T_{\rm C} = 25^{\circ}{\rm C}$		235	350	ns
t _{rr}			T _C = 125°C		300		
1	Diode Peak Reverse Recovery		$T_C = 25^{\circ}C$		27	40	
1 _{FF}	Current		T _C = 125°C		31		A
	Q _{rr} Diode Reverse Recovery Charge		T _C = 25°C		3130	4700	-0
Q _{IT}			T _C = 125°C		4650		nC

ECE 442 Power Electronics

ECE 442 Power Electronics