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1.  PN-junctions - General Consideration:
• PN-junction is a two terminal device.
• Based on the doping profile, PN-junctions can be 

separated into two major categories:
- step junctions
- linearly-graded junctions
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(A)  Equilibrium analysis of step junctions

(a)  Built-in voltage Vbi:

(b)  Majority- minority carrier
relationship:
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(c) Depletion region width:
 Solve 1D Poisson equation using depletion charge 
approximation, subject to the following boundary condi-
tions:

p-side:

n-side:

 Use the continuity of the two solutions at x=0, and 
charge neutrality, to obtain the expression for the depletion 
region width W:
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(d) Maximum electric field:
The maximum electric field, which occurs at the 
metallurgical junction, is given by:

(e) Carrier concentration variation:
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(f) Analytical vs. numerical data
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(g) Depletion layer capacitance:
 Consider a p+n, or one-sided junction, for which:

 The depletion layer capacitance is calculated using:
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(B)  Equilibrium analysis of linearly-graded junction:

(a)  Depletion layer width:

(c)  Maximum electric field:

(d)  Depletion layer capacitance:

Based on accurate numerical simulations, the depletion 
layer capacitance can be more accurately calculated if Vbi
is replaced by the gradient voltage Vg:
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(2)  Ideal Current-Voltage Characteristics:
Assumptions:
• Abrupt depletion layer approximation
• Low-level injection  injected minority carrier density 

much smaller than the majority carrier density
• No generation-recombination within the space-charge region 

(SCR)

(a)  Depletion layer:
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(b)  Quasi-neutral regions:

• Using minority carrier continuity equations, one arrives at 
the following expressions for the excess hole and electron 
densities in the quasi-neutral regions:
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• Corresponding minority-carriers diffusion current densities 
are:
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(c)  Total current density:

• Total current equals the sum of the minority carrier diffu-
sion currents defined at the edges of the SCR:

• Reverse saturation current IS:
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(d)  Origin of the current flow:
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(e)  Majority carriers current:

• Consider a forward-biased diode under low-level injection 
conditions:

• Total hole current in the quasi-neutral regions:
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• Electron drift current in the quasi-neutral region:
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(f)  Limitations of the Shockley model:

• The simplified Shockley model accurately describes IV-
characteristics of Ge diodes at low current densities.

• For Si and Ge diodes, one needs to take into account several 
important non-ideal effects, such as:

 Generation and recombination of carriers within the 
depletion region.

 Series resistance effects due to voltage drop in the quasi-
neutral regions.

 Junction breakdown at large reverse biases due to  tun-
neling and impact ionization effects.



(3)  Generation and Recombination Currents

 Continuity equation for holes:

 Steady-state and no light genera-
tion process: 

• Space-charge region recombination current:
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Reverse-bias conditions:

• Concentrations n and p are negligible in the depletion 
region:

• Space-charge region current is actually generation current:

• Total reverse-saturation current:
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• Generation current dominates when ni is small, which is 
always the case for Si and GaAs diodes.
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Forward-bias conditions:

• Concentrations n and p are large in the depletion region:

• Condition for maximum recombination rate:

• Estimate of the recombination current:
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• Exact expression for the recombination current:

• Corrections to the model:

• Total forward current:

  ideality factor.  Deviations of  from unity represent 
an important measure for the recombination current.
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• Importance of recombination effects:

Low voltages, small ni  recombination current dominates

Large voltages  diffusion current dominates

log(I)

V
dAJ

scrAJ
AJ



(4)  Breakdown Mechanisms

• Junction breakdown can be due to:

 tunneling breakdown
 avalanche breakdown

• One can determine which mechanism is responsible for the 
breakdown based on the value of the breakdown voltage 
VBD :

 VBD < 4Eg/q   tunneling breakdown

 VBD > 6Eg/q   avalanche breakdown

 4Eg/q  < VBD < 6Eg/q   both tunneling and 
avalanche mechanisms are responsible



Tunneling breakdown:

• Tunneling breakdown occurs in heavily-doped pn-junctions 
in which the depletion region width W is about 10 nm.
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using WKB approximation):

Fcr  average electric field in
the junction

• The critical voltage for 
tunneling breakdown, VBR, is 
estimated from:
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Avalanche breakdown:

• Most important mechanism in junction breakdown, i.e. it 
imposes an upper limit on the reverse bias for most diodes.

• Impact ionization is characterized by ionization rates an and 
ap, defined as probabilities for impact ionization per unit 
length, i.e. how many electron-hole pairs have been 
generated per particle per unit length:

- Ei  critical energy for impact ionization to occur
- Fcr  critical electric field
- l mean-free path for carriers
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• Description of the avalanche process:
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• Breakdown voltage voltage for which the multiplication 
rates Mn and Mp become infinite.  For this purpose, one 
needs to express Mn and Mp in terms of an and ap:
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• Limiting cases:

(a) an=ap (semiconductor with equal ionization rates):

(b) an>>ap (impact ionization dominated by one carrier):
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Breakdown voltages:

(a) Step p+n-junction
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• For one sided junction we can 
make the following 
approximation:

• Voltage drop across the depletion 
region on the n-side:

• Maximum electric field:

• Empirical expression for the 
breakdown voltage VBD:
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(b) Step p+-n-n+ junction
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• Extension of the n-layer large:

• Extension of the n-layer small:

• Final expression for the punch-
through voltage VP:
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• Doping-dependence of the breakdown voltage VBD:

• Temperature dependence:

As temperature increases, lattice scattering increases which 
makes impact ionization less probable. As a result of this, 
the breakdown voltage increases.
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(c) Plane vs. planar or cylindrical junction

• Plane junction:

• Planar junction:

n

Maximum electric field:

Except for surface effects, this is an 
ideal junction.
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(5)  AC-Analysis and Diode Switching

(a) Diffusion capacitance and small-signal equivalent
circuit

• This is capacitance related to the change of the minority 
carriers. It is important (even becomes dominant) under 
forward bias conditions.

• The diffusion capacitance is obtained from the device 
impedance, and using the continuity equation for minority 
carriers:

• Applied voltages, currents and solution for pn:
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• Equation for pn1(x):

• Boundary conditions:

• Final expression for pn1(x):
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• Small-signal hole current:

• Low-frequency limit for the admittance Y:

• RC-constant:
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The characteristic time constant is on 
the order of the minority carriers lifetime.



• Equivalent circuit model for forward bias:

• Bias dependence:
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(b) Diode switching

• For switching applications, the transition from forward bias 
to reverse bias must be nearly abrupt and the transit time 
short.

• Diode turn-on and turn-off characteristics can be obtained 
from the solution of the continuity equations:
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Valid for p+n diode
Qp(t) = excess hole charge



Diode turn-on:

• For t<0, the switch is open, and
the excess hole charge is:

• At t=0, the switch closes, and
we have the following boundary
condition:
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• Final expression for the excess hole charge:
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• Graphical representation:

• Steady state value for the bias across the diode:
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Diode turn-off:

• For t<0, the switch is in position
1, and a steady-state situation is
established:

• At t=0, the switch is moved to
position 2, and up until time t=t1
we have:

• The current through the diode
until time t1 is:

R
VI F

F 

  0),0( 0  ann Vptp

p+ n

t=0

VF

R
VR

R

1 2

R
VI R

R 



• To solve exactly this problem and find diode switching time,
is a rather difficult task. To simplify the problem, we make
the crucial assumption that IR remains constant even beyond
t1.

• The differential equation to be solved and the initial
condition are, thus, of the form:

• This gives the following final solution:

• Diode switching time:
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• Graphical representation:
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