LECTURE 9

-Magnetic Materials

Topics to be covered

- Review of energy bands
- Description of materials
- Drift velocity
- Collision Time, Mean Free Path

Basic Magnetic Quantities

Magnetic Induction or

Magnetic Flux Density B

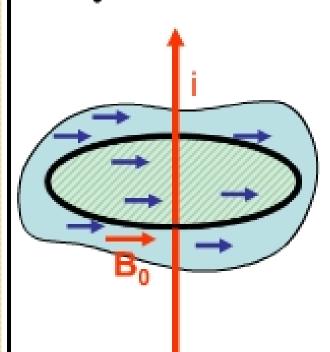
$$\mathbf{F} = q \mathbf{v} \times \mathbf{B}$$

Units: N C⁻¹ m⁻¹ s = Tesla (T) = Wb m^2

Magnetization M of a solid

A solid may have internal magnetic dipole moments due to electrons

Magnetic dipole moment per unit volume of a solid is called magnetization


$$\mathbf{M} = \frac{\mathbf{m}}{V}$$

Units: A $m^2/m^3 = A m^1$

Ampere's law in a solid

$$\oint \mathbf{B}.d\mathbf{l} \neq \mu_0 \mathbf{i}$$

$$\oint \mathbf{B}.d\mathbf{l} \neq \mu_0 i$$
 $\oint \mathbf{B}.d\mathbf{l} = \mu_0 i + \mu_0 \oint \mathbf{M}.d\mathbf{l}$

$$\oint \left(\frac{\mathbf{B} - \mu_0 \mathbf{M}}{\mu_0}\right) . d\mathbf{l} = i$$

$$\oint \mathbf{H} \cdot d\mathbf{l} = i$$

$$\mathbf{B} \equiv \mu_0 \mathbf{H} + \mu_0 \mathbf{M}$$

In free space

$$\mathbf{B} = \mu_0 \mathbf{H}$$

16.1

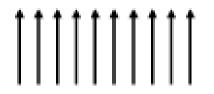
Inside a solid

$$\mathbf{B} = \mu_0 \mathbf{H} + \mu_0 \mathbf{M}$$

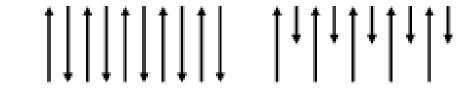
16.3

$$\mathbf{B} = \mu \mathbf{H}$$

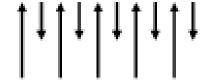
16.2


 μ = permeability of solid, H m⁻¹

$$\mu_r = \frac{\mu}{\mu_0}$$


 $\mu_r = \frac{\mu}{\mu_0}$ relative permeability of solid,

Ferromagnetic, ferrimagnetic and antiferromagnetic materials


Due to quantum mechanical interaction the magnetic moment of neighbouring atoms are aligned parallel or antiparallel to each other.

ferromagnetic

Antiferromagnetic

Ferrimagnetic