LECTURE 5

Introductory Lecture on Section B

-Dielectric Materials

Topics to be covered

- Behaviour of dielectric materials in static electric field
- Dipole Moments
- Polarization

Introduction Dielectrics

These are the materials having electric dipole moment permantly Dipole: A dipole is an entity in which equal positive and negative charges are separated by a small distance.

DIPOLE moment: The product of magnitude of either of the charges and separation distance b/w them is called Dipole moment.

 $\mu e = q \cdot x \Box coul - m + q - q X$ All dielectrics are electrical insulators and they are mainly used to store electrical energy.

It stores with minimum dissipation power). Since, the e- are bound to their parent molecules & hence, there is no free charge.

Ex: Mica, glass, plastic, water & polar molecules...

Important terms in dielectrics

1) Electric intensity or electric field strength Def:- The force per unit charge "dq" is known as electric field strength (E). Where "dq" is point charge , E is electric field, F is force applied on point charge "dq". E= $F/dq = Q/4\pi\epsilon r^2$ where " ϵ " is permittivity.

What is permittivity?

It is a measure of resistance that is encountered when forming an electric field in a medium. "In simple words permittivity is a measure of how an electric field effects and is effected by a dielectric medium".

- ε (permittivity of medium):- How much electric field generated per unit charge in that medium.
- b) ε0 (permittivity of space) :- The electric field generated in vacuum. It is constant value ε0=8.85 x 10-12 F/m. Imp points:
- 1) More electric flux exist in a medium with a high permittivity(because of polarization).
- 2) Permittivity is directly related to "Susceptibility" which is a measure of how easily a dielectric polarize in a response of an electric field. "

permittivity relates to a materials ability to transmit an electric field" $\varepsilon = \varepsilon r \cdot \varepsilon 0 = (1+\chi) \varepsilon 0$ Relative permittivity Susceptibility

Electric Flux density or Electric displacement Vector: The electric flux density or electric displacement vector "D" is the number of flux line's crossing a surface normal to the lines, divided by the surface area.

 $D=Q/4\pi\ r2$ where , $4\pi\ r2$ is the surface area of the sphere of radius "r".

Dielectric Parameters :a) Dielectric constant(ϵr):- It is defined as the ratio of permittivity of medium(ϵ) to the permittivity of free space($\epsilon 0$). $\epsilon r = \epsilon / \epsilon 0$ b) Electric dipole moment (μ):- The product of magnitude of charges & distance of separation is known as electric dipole moment (μ). μ = Q.r

Electric Polarization :- The process of producing electric dipoles by an electric field is called polarization in dielectrics.

"In simple words polarization P is defined as the dipole moment per unit volume averaged over the volume of a cell" $P = \mu$ / volume

Polarizability: When a dielectric material is placed in an electric field, the displacement of electric charge gives rise to the creation of dipole in the material.

The polarization P of an elementary particle is directly proportional to the electric field strength E. $P \propto E P = \alpha E$ $\alpha \rightarrow \text{polarizability constant The unit of "α" is Fm2$