Lecture Plan -1

Course Code:-EC-614-F

Semester:- VIClass:-ECSFaculty Name:Akanksha KulshreshthaSubject:-DSPUnit:-I

S. No.	Topic :-VARIOUS CLASSIFICATIONS OF SIGNALS	Time Allotted:-
1.	Introduction The various classification of signals in terms of its properties as varying discretely or continuously with time or repeating itself after specific interval of time or not.	<u>5min</u>
2.	Division of the Topic -DISCRETE-CONTINOUS SIGNAL -PERIODIC-APERIODIC SIGNAL -ENERGY-POWER SIGNALS	<u>35 min</u>
3.	Conclusion A signal carries some useful information. Discrete time signal varies randomly with time, periodic repeats periodically.	<u>5min</u>
4	Question / Answer Q1-How will you classify whether the signal is energy ? A1-if energy calculated is finite & power being zero then energy signal. Q2-What is difference bw deterministic & non deterministic signal? A2-deterministic signal is random in nature.	<u>5min</u>

Assignment to be given:-NIL

Course Code:-EC-614-F

Semester:- VIClass:-ECSFaculty Name:Akanksha KulshreshthaSubject:-DSPUnit:-I

Time S. No. **Topic :-SIGNAL REPRESENTATION IN TIME & FREQUENCY DOMAIN** Allotted:-1. Introduction 5min TIME & FREQUENCY DOMAIN REPRESENTATION of the signal is one in which the variation of signal with time & frequency are drawn respectively. 2. **Division of the Topic** 30min -TIME DOMAIN: VARIES DIRECTLY WITH TIME -FREQUENCY DOMAIN: FOURIER SERIES ,FOURIER TRANSFORM 3. Conclusion 5min Fourier series is frequency domain representation for periodic signals. Fourier transform: aperiodic signals 4 **Ouestion/answer** 5min Q1-What is difference by FOURIER series & FOURIER transform? A1- FOURIER series is drawn for periodic signal where as FOURIER transform is for non periodic signal. Q2-how many types of FOURIER series are there? A2-trignometric & complex

Assignment to be given:-NIL

Semester:-VIClass:-ECSFaculty Name:Akanksha Kulshreshtha

Course Code:-EC-614-F

Subject:-DSP

<u>Unit:-I</u>

S. No.	Topic :-FOURIER TRANSFORM & PROPERTIES OF FOURIER TRANSFORM	Time Allotted:-
1.	Introduction Introduction to fourier transform	<u>5min</u>
2	Division of the Topic -Fourier transform -properties of fourier transform	<u>30min</u>
3.	Conclusion Fourier transform & its properties are useful in many applications.	10 min
4	Question / Answer Q1-will you get the Fourier series/Fourier transform of full wave rectifier? A1 fourier series.	5 min

Assignment to be given:-OBTAIN THE FOURIER SERIES FOR FULL WAVE RECTIFIER.

Semester:- VIClass:-ECSFaculty Name:Akanksha Kulshreshtha

Course Code:-EC-614-F

Subject:-DSP

<u>Unit:-I</u>

S. No.	Topic :-FOURIER TRANSFORM & PROPERTIES OF FOURIER TRANSFORM	Time Allotted:-
1.	Introduction Introduction to fourier transform	<u>5min</u>
2	Division of the Topic -Fourier transform -properties of fourier transform	<u>30min</u>
3.	Conclusion Fourier transform & its properties are useful in many applications.	10 min
4	Question / Answer Q1-will you get the Fourier series/Fourier transform of full wave rectifier? A1 fourier series.	5 min

Assignment to be given:-OBTAIN THE FOURIER SERIES FOR FULL WAVE RECTIFIER.

Lecture Plan -5

<u>Semester:- VI</u> <u>Class:-ECS</u> <u>Name:</u> Akanksha Kulshreshtha Course Code:-EC-614-F Faculty

Subject:-DSP

<u>Unit:-I</u>

S. No.	Topic :-SYSTEM PROPERTIES	Time Allotted:-
1.	Introduction VARIOUS PROPERTIES OF SYSTEMS ON THE BASIS OF ITS VARIATION WITH TIME, DISTRIBUTION PROPERTY.	<u>5 min</u>
2	Division of the Topic Time invariance Distributive ,cumulative & associative property	<u>30min</u>
3.	Conclusion A system which does not varies with time & obeys superposition principal is LTI sys & being used in most of the applications.	<u>10 min</u>
4	Question / Answer Check for LTI property: $Q1-Y(n)=x(n^2)$ A1-not linear & time invariant. $Q2-Y(n)=a^* x(n)$ A2-linear & time invariant	<u>5 min</u>

Assignment to be given:-NIL

Semester:- VIClass:-ECSFaculty Name:Akanksha Kulshreshtha

Course Code:-EC-614-F

Subject:-DSP

<u>Unit:-II</u>

S. No.	Topic :-SYSTEM CLASSIFICATION	Time Allotted:-
1.	Introduction Various types of systems are studied on the basis of its properties it follows as linearity, casuality & stability.	<u>5 min</u>
2	Division of the Topic -Types are: CASUAL- ANTICAUSAL -LINEAR- NON LINEAR -STABLE -UNSTABLE	<u>30min</u>
3.	Conclusion CASUAL- having present & past i/p; STABLE- BIBO STABILITY LINEAR- superposition principle is followed.	<u>10 min</u>
4	Question / Answer Q1-Check whether the signals are causal? A1-IF system has only past & present i/ps then it is casual. Q2-what are the properties of linear & causal system? A2-if it follows superposition principal & BIBO stability condition.	<u>5 min</u>

Assignment to be given:-NIL

<u>Semester:- VI</u> <u>Class:-ECS</u> <u>Faculty Name:</u> Akanksha Kulshreshtha

Course Code:-EC-614-F

Subject:-DSP

<u>Unit:-II</u>

S. No.	Topic :-SYSTEM CLASSIFICATION	Time Allotted:-
1.	Introduction Various types of systems are studied on the basis of its properties it follows as linearity, casuality & stability.	<u>5 min</u>
2	Division of the Topic -Types are: CASUAL- ANTICAUSAL -LINEAR- NON LINEAR -STABLE -UNSTABLE	<u>30min</u>
3.	Conclusion CASUAL- having present & past i/p; STABLE- BIBO STABILITY LINEAR- superposition principle is followed.	<u>10 min</u>
4	Question / Answer Q1-Check whether the signals are causal? A1-IF system has only past & present i/ps then it is casual. Q2-what are the properties of linear & causal system? A2-if it follows superposition principal & BIBO stability condition.	<u>5 min</u>

Assignment to be given:-NIL

Lecture Plan-8

<u>Semester:- VI</u> <u>Class:-ECS</u> <u>Name:</u> Akanksha Kulshreshtha

Course Code:-EC-614-F Faculty

Subject:-DSP

<u>Unit:-II</u>

S. No.	Topic :-ENERGY & POWER THEORMS	Time Allotted:-
1.	Introduction PARSEVAL'S ENERGY & POWER THEORMS for calculation of energy & power for signals.	<u>5min</u>
2	Division of the Topic -PARSEVAL'S ENERGY THEORM -PARSEVAL'S POWER THEORM	<u>30min</u>
3.	Conclusion Energy signal is one having P=0,E= FINITE is the main condition and for POWER SIGNAL: P=FINITE,E=INFINITE	10 min
4	Question / Answer Q1-Obtain the energy of periodic signal? A1-it is finite Q2-will you get the Fourier series/Fourier transform of full wave rectifier? A2-fourier series.	5 min

Assignment to be given:-OBTAIN THE FOURIER SERIES FOR FULL WAVE RECTIFIER.

Lecture Plan9

<u>Semester:- VI</u> <u>Class:-ECS</u> <u>Faculty Name:</u> Akanksha Kulshreshtha

Course Code:-EC-614-F

Subject:-DSP

<u>Unit:-II</u>

S. No.	Topic :-LINEAR TIME INVARIENT SYSTEM	Time Allotted:-
1.	Introduction A Linear time invariant system is defined as the system which follows both linearity & time invariance property.	<u>5 min</u>
2	Division of the Topic -Convolution derivation of LTI sys -IMPULSE INVARIENT PROPERTY OF LTI	<u>30min</u>
3.	Conclusion In LTI sys linearity & time invariance are followed & o/p is obtained by convolution Of i/p signal with finite /infinite no of impulses.	<u>10 min</u>
4	Question / Answer Q1-What is impulse function? A1-a pulse of unity width going upward up to infinity. Q2-Why only impulse function is taken for LTI sys? A2-as it simply gives o/p of the system with out disturbing its actual i/ps.	<u>5 min</u>

Assignment to be given:-NIL

<u>Semester:- VI</u> <u>Class:-ECS</u> <u>Faculty Name:</u> Akanksha Kulshreshtha Course Code:-EC-614-F

Subject:-DSP

<u>Unit:-II</u>

S. No.	Topic :-LINEAR TIME INVARIENT SYSTEM	Time Allotted:-
1.	Introduction A Linear time invariant system is defined as the system which follows both linearity & time invariance property.	<u>5 min</u>
2	Division of the Topic -Convolution derivation of LTI sys -IMPULSE INVARIENT PROPERTY OF LTI	<u>30min</u>
3.	Conclusion In LTI sys linearity & time invariance are followed & o/p is obtained by convolution Of i/p signal with finite /infinite no of impulses.	<u>10 min</u>
4	Question / Answer Q1-What is impulse function? A1-a pulse of unity width going upward up to infinity. Q2-Why only impulse function is taken for LTI sys? A2-as it simply gives o/p of the system with out disturbing its actual i/ps.	<u>5 min</u>

Assignment to be given:-NIL

Semester:- VI Class:-ECS Faculty Name: Akanksha Kulshreshtha Course Code:-EC-614-F

Subject:-DSP

<u>Unit:-II</u>

S. No.	Topic :-FIR & IIR SYSTEMS	Time Allotted:-
1.	Introduction FINITE IMPULSE RESPONSE & INFINITE IMPULSE RESPONSE are ,if i/p are taken for finite time period & if i/p are taken for infinite period respectively.	<u>5 min</u>
2	Division of the Topic -Recursive & non recursive methods of realization -Difference eqn for FIR & IIR SYS	<u>30min</u>
3.	Conclusion In FIR sys, finite no of impulses are taken but for IIR infinite impulses are taken for system response.	<u>10 min</u>
4	Question / Answer Q1-What is difference bw FIR & IIR SYSTEMS? A1- if i/p are taken for finite time period & if i/p are taken for infinite period respectively. Q2-How will you realize FIR & IIR sys? A2-DIRECT 1, DIRECT2 & CASCADE FORMS	<u>5 min</u>

Assignment to be given:-DESCRIBE THE FIR & IIR FILTERS WITH PROPER EXAMPLE.

Lecture Plan13

<u>Semester:- VI</u> <u>Class:-ECS</u> <u>Name:</u> Akanksha Kulshreshtha

Course Code:-EC-614-F Faculty

Subject:-DSP

<u>Unit:-II</u>

S. No.	Topic :-FIR & IIR SYSTEMS	Time Allotted:-
1.	Introduction FINITE IMPULSE RESPONSE & INFINITE IMPULSE RESPONSE are ,if i/p are taken for finite time period & if i/p are taken for infinite period respectively.	<u>5 min</u>
2	Division of the Topic -Recursive & non recursive methods of realization -Difference eqn for FIR & IIR SYS	<u>30min</u>
3.	Conclusion In FIR sys, finite no of impulses are taken but for IIR infinite impulses are taken for system response.	<u>10 min</u>
4	Question / Answer Q1-What is difference bw FIR & IIR SYSTEMS? A1- if i/p are taken for finite time period & if i/p are taken for infinite period respectively. Q2-How will you realize FIR & IIR sys? A2-DIRECT 1, DIRECT2 & CASCADE FORMS	<u>5 min</u>

Assignment to be given:-DESCRIBE THE FIR & IIR FILTERS WITH PROPER EXAMPLE.

Semester:- VIClass:-ECSFaculty Name:Akanksha Kulshreshtha

Course Code:-EC-614-F

Subject:-DSP

<u>Unit:-IV</u>

S. No.	Topic :-Z-TRANSFORM	Time Allotted:-
1.	Introduction DEFINATION OF Z-TRANSFORM: is to transform a time domain signal into its complex plane X(z).	<u>5 min</u>
2	Division of the Topic -One sided Z-Transform ,two sided Z-Transform -Causal & anti-causal Z-Transform	<u>30min</u>
3.	Conclusion Z-Transform is used in analysis of discrete time signals & LTI systems	<u>10 min</u>
4	Question / Answer Q1-What is meant by Z-Transform & why it is used? A1-Z-TRANSFORM: is to transform a time domain signal into its complex plane X(z). Q2-why Z-TRANSFORM is used? A2- Z-Transform is used in analysis of discrete time signals & LTI systems	<u>5 min</u>

Assignment to be given:-NIL

Semester:- VIClass:-ECSFaculty Name:Akanksha Kulshreshtha

Course Code:-EC-614-F

Subject:-DSP

<u>Unit:-IV</u>

S. No.	Topic :-PROPERTIES OF Z-TRANSFORM	Time Allotted:-
1.	Introduction PROPERTIES OF Z- TRANSFORM & NUMERICAL BASED ON ITARE VERY USEFUL IN ANALYSING COMPLICATED Z-PLANE PROBLEMS.	<u>5 min</u>
2	Division of the Topic -Properties: LINEARITY -TIME REVERSAL, TIME REVERSAL & SCALING, -DIFFERENTIATION I-NITIAL & FINAL VALUE THEORM	<u>30min</u>
3.	Conclusion By using properties of Z-Transform we can have Z-Transform easily & directly.	<u>10 min</u>
4	Question / Answer Find the Z-Transform using property: Q1-X[n]=u[-n] A1-1/1-z $Q2-n^2 u(n)$ $A2-z^{-1*} (1+z^{-1})/(1-z^{-1})$	<u>5 min</u>

Assignment to be given:-NIL

Lecture Plan-16

<u>Semester:- VI</u> <u>Class:-ECS</u> <u>Faculty Name:</u> Akanksha Kulshreshtha

Course Code:-EC-614-F

Subject:-DSP

Unit:-IV

S. No.	Topic :-PROPERTIES OF Z-TRANSFORM	Time Allotted:-
1.	Introduction PROPERTIES OF Z- TRANSFORM & NUMERICAL BASED ON ITARE VERY USEFUL IN ANALYSING COMPLICATED Z-PLANE PROBLEMS.	<u>5 min</u>
2	Division of the Topic -Properties: LINEARITY -TIME REVERSAL, TIME REVERSAL & SCALING, -DIFFERENTIATION I-NITIAL & FINAL VALUE THEORM	<u>30min</u>
3.	Conclusion By using properties of Z-Transform we can have Z-Transform easily & directly.	<u>10 min</u>
4	Question / Answer Find the Z-Transform using property: Q1-X[n]=u[-n] A1-1/1-z Q2- n^2 u(n) A2-z^-1* (1+z^-1)/(1-z^-1)	<u>5 min</u>

Assignment to be given:-NIL

<u>Semester:- VI</u> <u>Class:-ECS</u> <u>Faculty Name:</u> Akanksha Kulshreshtha Course Code:-EC-614-F

Subject:-DSP

Unit:-IV

S. No.	Topic :-INVERSE Z-TRANSFORM	Time Allotted:-
1.	Introduction FINDING INVERSE Z-TRANSFORM & NUMERICALS BASED ON IT TO GET THE ORIGINAL SEQUENCE AGAIN.	<u>5 min</u>
2	Division of the Topic -LONG DIVISION METHOD -PARTIAL FRACTION EXPANSION METHOD	<u>30min</u>
3.	Conclusion For finding the sequence again, we use long division & partial fraction methods which again gives us Seq $X(n)$.	<u>10 min</u>
4	Question / Answer Q-Define the INVERSE Z-Transform : A-For finding the sequence again, we use long division & partial fraction methods which again gives us Seq X(n).	<u>5 min</u>

Assignment to be given:- Find the INVERSE Z-Transform :

(a) X(z)= ln (1+a/z) ,z >a.
(b) X(z) = z/ (z-2) * (z-3)

Lecture Plan-18

Semester:- VIClass:-ECSFaculty Name:Akanksha KulshreshthaSubject:-DSPUnit:-IV

Course Code:-EC-614-F

S. No.	Topic :-INVERSE Z-TRANSFORM	Time Allotted:-
1.	Introduction FINDING INVERSE Z-TRANSFORM & NUMERICALS BASED ON IT TO GET THE ORIGINAL SEQUENCE AGAIN.	<u>5 min</u>
2	Division of the Topic -LONG DIVISION METHOD -PARTIAL FRACTION EXPANSION METHOD	<u>30min</u>
3.	Conclusion For finding the sequence again, we use long division & partial fraction methods which again gives us Seq $X(n)$.	<u>10 min</u>
4	Question / Answer Q-Define the INVERSE Z-Transform : A-For finding the sequence again, we use long division & partial fraction methods which again gives us Seq X(n).	<u>5 min</u>

Assignment to be given:- Find the INVERSE Z-Transform :

(a) $X(z) = \ln (1+a/z)$, z > a. (b) X(z) = z/(z-2) * (z-3)

Course Code:-EC-614-F

<u>Semester:- VI</u> <u>Faculty Name:</u> Akanksha Kulshreshtha Subject:-DSP Class:-ECS

Unit:-IV

S. No.	Topic :-APPLICATIONS OF Z-TRANSFORM	Time Allotted:-
1.	Introduction Z –Transform plays an important role in analysis & representation of discrete time LTI system.	<u>5 min</u>
2	Causality of discrete time LTI sys -Stability of D.T.LTI SYS -Linear constant coefficient difference eqn -Determination of poles zeros of Z-transform	<u>30min</u>
3.	Conclusion Properties of discrete time LTI sys can be directly related to their transfer function & their characteristics. Hence by Z-transform we can check for causality, stability & poles zeros.	<u>10 min</u>
4	Question / Answer Q1-What do you mean by transfer function? A1-It is defined as the ratio of output of the sys to the input of sys. Q2-What is the condition for stability of sys? A2sum of h(k) <infinite &="" circle.<="" fn="" h(z)="" inside="" lie="" of="" roc="" td="" the="" transfer="" unit=""><td><u>5 min</u></td></infinite>	<u>5 min</u>

<u>Assignment to be given:-</u> Solve the transfer function of discrete time LTI sys by linear constant diff eqn: $Y(n) = \frac{1}{2} y(n-1) + x(n) + \frac{1}{3} x(n-1)$

Course Code:-EC-614-F

<u>Semester:- VI</u> <u>Faculty Name:</u> Akanksha Kulshreshtha <u>Subject</u>:-DSP

Class:-ECS

Unit:-IV

S. No.	Topic :-APPLICATIONS OF Z-TRANSFORM	Time Allotted:-
1.	Introduction Z –Transform plays an important role in analysis & representation of discrete time LTI system.	<u>5 min</u>
2	Causality of discrete time LTI sys -Stability of D.T.LTI SYS -Linear constant coefficient difference eqn -Determination of poles zeros of Z-transform	<u>30min</u>
3.	Conclusion Properties of discrete time LTI sys can be directly related to their transfer function & their characteristics. Hence by Z-transform we can check for causality, stability & poles zeros.	<u>10 min</u>
4	Question / Answer Q1-What do you mean by transfer function? A1-It is defined as the ratio of output of the sys to the input of sys. Q2-What is the condition for stability of sys? A2sum of h(k) <infinite &="" circle.<="" fn="" h(z)="" inside="" lie="" of="" roc="" td="" the="" transfer="" unit=""><td><u>5 min</u></td></infinite>	<u>5 min</u>

<u>Assignment to be given:-</u> Solve the transfer function of discrete time LTI sys by linear constant diff eqn: $Y(n) = \frac{1}{2} \frac{y(n-1)+x(n)+1}{3} x$ (n-1)

Course Code:-EC-614-F

Class:-ECS

<u>Semester:- VI</u> <u>Faculty Name:</u> Akanksha Kulshreshtha <u>Subject</u>:-DSP

<u>Unit:-III</u>

S. No.	Topic :-SAMPLING THEORM	Time Allotted:-
1.	Introduction A band limited signal x(t) having a finite energy which has no frequency components higher than Fh hertz can be completely described & reconstructed from its samples taken at rate of 2Fh samples per second.	<u>5 min</u>
2	Division of the Topic -Sampling theorem -Nquist rate -Frequency domain representation of sampled signal	<u>30min</u>
3.	Conclusion Sampling is done to convert a continuous time signal into discrete time signal & minimum frequency for sampling is 2*f(max) of signal.	<u>10 min</u>
4	Question / Answer Q1-What is meant by nquist rate? A1-minimum rate of sampling process. Q2-Various fields where sampling is required? A2-voice processing, image compression, speech signal analysis etc	<u>5 min</u>

Assignment to be given:-NIL

Lecture Plan-22

Course Code:-EE-407-E

Semester:- VI
Faculty Name:Class:-ECSSubject:-DSPUnit:-III

S. No.	Topic :-RECONSTRUCTION OF SAMPLED SIGNAL	Time Allotted:-
1.	Introduction .RECONSTRUCTION is getting original signal back from sampled signal &sufficient no of samples must be taken so that reconstruction results in whole signal.	<u>5 min</u>
2	Division of the Topic -CONDITIONS FOR SAMPLING. -RECONSTRUCTION PRINCIPAL. -LINEAR INTERPOLATION.	<u>30min</u>
3.	Conclusion Hence frequency domain sampled signal can be converted into time domain by linear interpolation in which the specific pts of sampled signal are joined.	<u>10 min</u>
4	Question / Answer Q1-What is meant by reconstruction? A1-getting original signal back from sampled signal. Q2-What re the various conditions for sampling to be done? A2- sufficient no of samples must be taken so that reconstruction resuts in whole signal.	<u>5 min</u>

Assignment to be given:-NIL

<u>Semester:- VI</u> <u>Class:-ECS</u> <u>Faculty Name:</u> Akanksha Kulshreshtha Course Code:-EC-614-F

Subject:-DSP

<u>Unit:-III</u>

S. No.	Topic :-CHANGING THE SAMPLING RATE	Time Allotted:-
1.	Introduction DECIMATION is the method of reducing the sampling rate & INTERPOLATION is increasing the sampling rate.	<u>5 min</u>
2	Division of the Topic -DECIMATION -INTERPOLATION -Filter designing of interpolation & decimation	<u>30min</u>
3.	Conclusion Sampling rate alteration is done by rational factor (I/D) with the help of interpolation & decimation as per need.	<u>10 min</u>
4	Question / Answer Q1-What is meant by sampling rate alteration? A1-changing sampling rate according to our need. Q2-What re the various conditions for decimation & interpolation? A2-decimation filter is used to band limited signal before decimation operation.	<u>5 min</u>

Assignment to be given:-EXPLAIN THE PROCESS OF DECIMATION & INTERPOLATION.

Lecture Plan24

Semester:- VI

Class:-ECS

Course Code:-EC-614-F

Faculty Name: Akanksha Kulshreshtha

Subject:-DSP

<u>Unit:-III</u>

S. No.	Topic :-RECONSTRUCTION OF SAMPLED SIGNAL	Time Allotted:-
1.	Introduction .RECONSTRUCTION is getting original signal back from sampled signal &sufficient no of samples must be taken so that reconstruction results in whole signal.	<u>5 min</u>
2	Division of the Topic -CONDITIONS FOR SAMPLING. -RECONSTRUCTION PRINCIPAL. -LINEAR INTERPOLATION.	<u>30min</u>
3.	Conclusion Hence frequency domain sampled signal can be converted into time domain by linear interpolation in which the specific pts of sampled signal are joined.	<u>10 min</u>
4	Question / Answer Q1-What is meant by reconstruction? A1-getting original signal back from sampled signal. Q2-What re the various conditions for sampling to be done? A2- sufficient no of samples must be taken so that reconstruction resuts in whole signal.	<u>5 min</u>

Assignment to be given:-NIL

Class:-ECS

Semester:- VI

Course Code:-EC-614-F

Faculty Name: Akanksha Kulshreshtha

Subject:-DSP

<u>Unit:-III</u>

S. No.	Topic :-DISCRETE TIME PROCESSING OF CONTINOUS TIME SIGNALS	Time Allotted:-
1.	Introduction Discrete time processing is done by transforming the continuous time signal into small intervals by sampling the signal into discrete intervals.	<u>5 min</u>
2	Division of the Topic -Time varying digital filter structures. -Interfacing of digital systems with different sampling rate.	<u>30min</u>
3.	Conclusion Sampling rate alteration is done by rational factor (I/D)	<u>10 min</u>
4	Question / Answer Q1-What is meant by discrete time processing? A1- Discrete time processing is done by transforming the continuous time signal into small intervals by sampling the signal into discrete intervals.	<u>5 min</u>

Assignment to be given:-GIVEN IN LECTURE NO. 11

Lecture Plan -27

Semester:- VI

Course Code:-EC-614-F

Class:-ECS Faculty Name: Akanksha Kulshreshtha

Subject:-DSP

<u>Unit:-III</u>

S. No.	Topic :-DISCRETE TIME PROCESSING OF CONTINOUS TIME SIGNALS	Time Allotted:-
1.	Introduction Discrete time processing is done by transforming the continuous time signal into small intervals by sampling the signal into discrete intervals.	<u>5 min</u>
2	Division of the Topic -Time varying digital filter structures. -Interfacing of digital systems with different sampling rate.	<u>30min</u>
3.	Conclusion Sampling rate alteration is done by rational factor (I/D)	<u>10 min</u>
4	Question / Answer Q1-What is meant by discrete time processing? A1- Discrete time processing is done by transforming the continuous time signal into small intervals by sampling the signal into discrete intervals.	<u>5 min</u>

Assignment to be given:-GIVEN IN LECTURE NO. 11

Course Code:-EC-614-F

Semester:- VIClass:-ECSFaculty Name:Akanksha KulshreshthaSubject:-DSPUnit:-III

S. No.	Topic :-RECONSTRUCTION OF SAMPLED SIGNAL	Time Allotted:-
1.	Introduction .RECONSTRUCTION is getting original signal back from sampled signal &sufficient no of samples must be taken so that reconstruction results in whole signal.	<u>5 min</u>
2	Division of the Topic -CONDITIONS FOR SAMPLING. -RECONSTRUCTION PRINCIPAL. -LINEAR INTERPOLATION.	<u>30min</u>
3.	Conclusion Hence frequency domain sampled signal can be converted into time domain by linear interpolation in which the specific pts of sampled signal are joined.	<u>10 min</u>
4	Question / Answer Q1-What is meant by reconstruction? A1-getting original signal back from sampled signal. Q2-What re the various conditions for sampling to be done? A2- sufficient no of samples must be taken so that reconstruction resuts in whole signal.	<u>5 min</u>

Assignment to be given:-NIL

Lecture Plan-30

Class:-ECS

Course Code:-EC-614-F

<u>Semester:- VI</u> <u>Faculty Name:</u> Akanksha Kulshreshtha

Subject:-DSP

<u>Unit:-IV</u>

S. No.	Topic :-INTRODUCTION TO FIR & IIR FILTERS.	Time Allotted:-
1.	Introduction Digital filter is one in which both the i/p & o/p are discrete time signals. FIR & IIR Both are digital type of filter s based on FIR & IIR systems.	<u>5 min</u>
2	Division of the Topic -MAJOR CONSIDERATIONS IN USING DIGITAL FILTERS -DIFFERENCE BW FIR & IIR FILTERS	<u>30min</u>
3.	Conclusion IIR filters do not have linear phase & these are used for some phase distortion, these are stable & less flexible realized by recursive methods. FIR filters have linear phase , greater flexibility, more immunity to noise & realized by non recursive methods.	<u>10 min</u>
4	Question / Answer Q1-what is filtering? A1-it is a process by which the frequency spectrum of signal can be modified or manipulated to get some result. Q2-what is digital filter? A2- Digital filter is one in which both the i/p & o/p are discrete time signals	<u>5 min</u>

Assignment to be given:- NIL

Lecture Plan-31

Semester:- VI

Class:-ECS

Course Code:-EC-614-F

Faculty Name: Akanksha Kulshreshtha

Subject:-DSP

Unit:-IV

S. No.	Topic :-INTRODUCTION TO FIR & IIR FILTERS.	Time Allotted:-
1.	Introduction Digital filter is one in which both the i/p & o/p are discrete time signals. FIR & IIR Both are digital type of filter s based on FIR & IIR systems.	<u>5 min</u>
2	Division of the Topic -MAJOR CONSIDERATIONS IN USING DIGITAL FILTERS -DIFFERENCE BW FIR & IIR FILTERS	<u>30min</u>
3.	Conclusion IIR filters do not have linear phase & these are used for some phase distortion, these are stable & less flexible realized by recursive methods. FIR filters have linear phase , greater flexibility, more immunity to noise & realized by non recursive methods.	<u>10 min</u>
4	Question / Answer Q1-what is filtering? A1-it is a process by which the frequency spectrum of signal can be modified or manipulated to get some result. Q2-what is digital filter? A2- Digital filter is one in which both the i/p & o/p are discrete time signals	<u>5 min</u>

Assignment to be given:- NIL

Lecture Plan-32

Semester:- VI

Class:-ECS

Course Code:-EC-614-F

<u>Faculty Name:</u> Akanksha Kulshreshtha

Subject:-DSP

Unit:-IV

S. No.	Topic :-REALIZATION OF DIGITAL FILTERS	Time Allotted:-
1.	Introduction For realization of digital filters the system function $H(z)$ is specified & then its realization is possible. For implementing the specified difference equation of a filter addition , delay & multiplication by a constant.	<u>5 min</u>
2	Division of the Topic - BASIC BLOCK DIAGRAM REPRESENTATION - DIRECT FORM 1 & DIRECT FORM 2 - TRANSPOSED FORM REALIZATION -CASCADE FORM STRUCTURE	<u>30min</u>
3.	Conclusion Due to finite precision arithmetic, sensitivity of the coefficients to quantization effects increases with the order of filter. this sensitivity may change the coefficient values & hence the frequency response causing the filter to be unstable. To overcome this cascade & parallel form realization is used.	<u>10 min</u>
4	 Question / Answer Q1-what are advantages of block diagram representation? A1-(a) computational algorithm can be easily drawn. (b) hardware requirements can be easily developed. (c) Relationship bw o/p & i/p can be easily determined Q2-what is digital filter? A2- Digital filter is one in which both the i/p & o/p are discrete time signals 	<u>5 min</u>

Assignment to be given:- NIL

Semester:- VI

Class:-ECS

Course Code:-EC-614-F

Faculty Name: Akanksha Kulshreshtha

Subject:-DSP

<u>Unit:-IV</u>

S. No.	Topic :-REALIZATION OF DIGITAL FILTERS	Time Allotted:-
1.	Introduction For realization of digital filters the system function H(z) is specified & then its realization is possible. For implementing the specified difference equation of a filter addition , delay & multiplication by a constant.	<u>5 min</u>
2	Division of the Topic - BASIC BLOCK DIAGRAM REPRESENTATION - DIRECT FORM 1 & DIRECT FORM 2 - TRANSPOSED FORM REALIZATION -CASCADE FORM STRUCTURE	<u>30min</u>
3.	Conclusion Due to finite precision arithmetic, sensitivity of the coefficients to quantization effects increases with the order of filter. this sensitivity may change the coefficient values & hence the frequency response causing the filter to be unstable. To overcome this cascade & parallel form realization is used.	<u>10 min</u>
4	 Question / Answer Q1-what are advantages of block diagram representation? A1-(a) computational algorithm can be easily drawn. (d) hardware requirements can be easily developed. (e) Relationship bw o/p & i/p can be easily determined Q2-what is digital filter? A2- Digital filter is one in which both the i/p & o/p are discrete time signals 	<u>5 min</u>

Assignment to be given:- NIL

<u>Semester:- VI</u> <u>Class:-ECS</u> <u>Faculty Name:</u> Akanksha Kulshreshtha Course Code:-EC-614-F

anksha Kulshreshtha

Subject:-DSP

<u>Unit:-IV</u>

S. No.	Topic :-ANALYSIS OF FINITE WIRDLENGTH	Time Allotted:-
1.	Introduction In IIR filters the impulse response sequence is of infinite duration so impulse response sequence of it is of zero terms. The design methods of it are nonlinear. FIR filters are realized from analog filters.	<u>5 min</u>
2	Division of the Topic -IIR FILTERS -FIR FILTERS -FINITE WORDLENGTH EFFECT	<u>30min</u>
3.	Conclusion IIR filters do not have linear phase & these are used for some phase distortion, these are stable & less flexible realized by recursive methods. IT involves transformation of analog domain into digital domain H(n)=H(m-n-1)	<u>10 min</u>
4	Question / Answer Q1-where poles of IIR filter lies? A1- on an ellipse Q2-what is backward difference? A2- to convert analog filter into digital filter.	<u>5 min</u>

<u>Assignment to be given:-</u> DESCRIBE THE VARIOUS DESIGNING METHODS OF IIR FILTERS.

Semester:- VIClass:-ECSFaculty Name:Akanksha Kulshreshtha

Course Code:-EC-614-F

Subject:-DSP

<u>Unit:-IV</u>

S. No.	Topic :-ANALYSIS OF FINITE WIRDLENGTH	Time Allotted:-
1.	Introduction In IIR filters the impulse response sequence is of infinite duration so impulse response sequence of it is of zero terms. The design methods of it are nonlinear. FIR filters are realized from analog filters.	<u>5 min</u>
2	Division of the Topic -IIR FILTERS -FIR FILTERS -FINITE WORDLENGTH EFFECT	<u>30min</u>
3.	Conclusion IIR filters do not have linear phase & these are used for some phase distortion, these are stable & less flexible realized by recursive methods. IT involves transformation of analog domain into digital domain H(n)=H(m-n-1)	<u>10 min</u>
4	Question / Answer Q1-where poles of IIR filter lies? A1- on an ellipse Q2-what is backward difference? A2- to convert analog filter into digital filter.	<u>5 min</u>

Assignment to be given:- DESCRIBE THE VARIOUS DESIGNING METHODS OF IIR FILTERS.

Class:-ECS

Course Code:-EC-614-F

Semester:- VI Faculty Name: Akanksha Kulshreshtha

Subject:-DSP

Unit:-IV

S. No.	Topic :-APPLICATIONS OF DSP	Time Allotted:-
1.	Introduction DSP tech are used in various areas as availability of high resolution spectral density, accuracy,. Dsp chips which occupy small space, low cost, less power consuming & highly reliable.	<u>5 min</u>
2	Division of the Topic -SPEECH SIGNAL ANALYSIS -IMAGE PROCESSING -VOICE PRIVACY -RADIO RANGE RESOLUTION -DOPPLER FILTERING -IMAGE COMPRESSION	<u>30min</u>
3.	Conclusion DSP is very popular in all fields availability of high resolution spectral density, accuracy,. Dsp chips which occupy small space, low cost, less power consuming & highly reliable.	<u>10 min</u>
4	Question / Answer Q1-what is channel vocoder? A1-it is voice analysis synthesis system. Q2-what is range of voice signal frequency? A2- 300- 3000 hz	<u>5 min</u>

Assignment to be given:- NIL

Semester:- VIClass:-ECSFaculty Name:Akanksha Kulshreshtha

Course Code:-EC-614-F

Subject:-DSP

<u>Unit:-IV</u>

S. No.	Topic :-APPLICATIONS OF DSP	Time Allotted:-
1.	Introduction DSP tech are used in various areas as availability of high resolution spectral density, accuracy,. Dsp chips which occupy small space, low cost, less power consuming & highly reliable.	<u>5 min</u>
2	Division of the Topic -SPEECH SIGNAL ANALYSIS -IMAGE PROCESSING -VOICE PRIVACY -RADIO RANGE RESOLUTION -DOPPLER FILTERING -IMAGE COMPRESSION	<u>30min</u>
3.	Conclusion DSP is very popular in all fields availability of high resolution spectral density, accuracy,. Dsp chips which occupy small space, low cost, less power consuming & highly reliable.	<u>10 min</u>
4	Question / Answer Q1-what is channel vocoder? A1-it is voice analysis synthesis system. Q2-what is range of voice signal frequency? A2- 300- 3000 hz	<u>5 min</u>

Assignment to be given:- NIL

Lecture Plan-39

Semester:- VI

Class:-ECS

Course Code:-EC-614-F

Subject:-DSP

Unit:-IV

S. No.	Topic :-MULTIRATE DSP	Time Allotted:-
1.	Introduction . MULTIRATE DSP is changing the sampling rate DECIMATION is the method of reducing the sampling rate & INTERPOLATION is increasing the sampling rate	<u>5 min</u>
2	Division of the Topic -DECIMATION -INTERPOLATION	<u>30min</u>
3.	Conclusion Sampling rate alteration is done by rational factor (I/D) with the help of interpolation & decimation as per need.	<u>10 min</u>
4	Question / Answer Q1-What is meant by sampling rate alteration? A1-changing sampling rate according to our need. Q2-What re the various conditions for decimation & interpolation? A2-decimation filter is used to band limited signal before decimation operation	<u>5 min</u>

Assignment to be given:- NIL

Lecture Plan-40

Semester:- VI

Class:-ECS

Course Code:-EC-614-F

Subject:-DSP

Unit:-IV

S. No.	Topic :-SAMPLING RATE CONVERSION	Time Allotted:-
1.	Introduction A band limited signal x(t) having a finite energy which has no frequency components higher than Fh hertz can be completely described & reconstructed from its samples taken at rate of 2Fh samples per second.	<u>5 min</u>
2	Division of the Topic -Sampling theorem -Nquist rate -Frequency domain representation of sampled signal	<u>30min</u>
3.	Conclusion Sampling is done to convert a continuous time signal into discrete time signal & minimum frequency for sampling is 2*f(max) of signal.	<u>10 min</u>
4	Question / Answer Q1-What is meant by nquist rate? A1-minimum rate of sampling process. Q2-Various fields where sampling is required? A2-voice processing, image compression, speech signal analysis etc	<u>5 min</u>

Assignment to be given:-NIL

Lecture Plan-41

Course Code:-EC-614-F

Semester:- VI

Class:-ECS

Subject:-DSP

<u>Unit:-IV</u>

S. No.	Topic :-SAMPLING RATE CONVERSION	Time Allotted:-
1.	Introduction A band limited signal x(t) having a finite energy which has no frequency components higher than Fh hertz can be completely described & reconstructed from its samples taken at rate of 2Fh samples per second.	<u>5 min</u>
2	Division of the Topic -Sampling theorem -Nquist rate -Frequency domain representation of sampled signal	<u>30min</u>
3.	Conclusion Sampling is done to convert a continuous time signal into discrete time signal & minimum frequency for sampling is 2*f(max) of signal.	<u>10 min</u>
4	Question / Answer Q1-What is meant by nquist rate? A1-minimum rate of sampling process. Q2-Various fields where sampling is required? A2-voice processing, image compression, speech signal analysis etc	<u>5 min</u>

Assignment to be given:-NIL

Lecture Plan42

Course Code:-EC-614-F

Semester:- VI

Class:-ECS

Subject:-DSP

<u>Unit:-IV</u>

S. No.	Topic :-MULTIRATE DSP,INTERPOLATORS,DECIMATORS	Time Allotted:-
1.	Introduction . MULTIRATE DSP is changing the sampling rate DECIMATION is the method of reducing the sampling rate & INTERPOLATION is increasing the sampling rate	<u>5 min</u>
2	Division of the Topic -DECIMATION -INTERPOLATION	<u>30min</u>
3.	Conclusion Sampling rate alteration is done by rational factor (I/D) with the help of interpolation & decimation as per need.	<u>10 min</u>
4	Question / Answer Q1-What is meant by sampling rate alteration? A1-changing sampling rate according to our need. Q2-What re the various conditions for decimation & interpolation? A2-decimation filter is used to band limited signal before decimation operation	<u>5 min</u>

Assignment to be given:- NIL

Class:-ECS Semester:- VI

Course Code:-EC-614-F

Faculty Name: Akanksha Kulshreshtha

Subject:-DSP

Unit:-IV

S. No.	Topic :-MULTIRATE DSP,INTERPOLATORS,DECIMATORS	Time Allotted:-
1.	Introduction . MULTIRATE DSP is changing the sampling rate DECIMATION is the method of reducing the sampling rate & INTERPOLATION is increasing the sampling rate	<u>5 min</u>
2	Division of the Topic -DECIMATION -INTERPOLATION	<u>30min</u>
3.	Conclusion Sampling rate alteration is done by rational factor (I/D) with the help of interpolation & decimation as per need.	<u>10 min</u>
4	Question / Answer Q1-What is meant by sampling rate alteration? A1-changing sampling rate according to our need. Q2-What re the various conditions for decimation & interpolation? A2-decimation filter is used to band limited signal before decimation operation	<u>5 min</u>

Assignment to be given:- NIL