Faculty: Parul BansalSemester: IVClass: ECSCourse Code

Course Code: CSE-210-F

Subject: Computer Architecture and Organization

Section: A

S. No.	Topic :- Boolean Algebra	Time Allotted:-
1.	Introduction Boolean algebra and Logic gates, Combinational logic blocks(Adders, Multiplexers, Encoders, de-coder), Sequential logic blocks(Latches, Flip-Flops, Registers, Counters) Store program control concept, Flynn's classification of computers (SISD, MISD, MIMD); Multilevel viewpoint of a machine: digital logic, micro architecture, ISA, operating systems, high level language; structured organization; CPU, caches, main memory, secondary memory units & I/O; Performance metrics; MIPS, MFLOPS.	05 min
2	 Division of the Topic Boolean Algebra Axioms Terminology N-bit boolean algebra Named theorems 	30
3.	Conclusion Study and concepts of Boolean algebra were explained.	10

Assignment to be given: - What are the axioms?

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Faculty: Parul Bansal

Lecture Plan 2

Class: ECS

Semester: IV

Course Code: CSE-210-F

Subject: Computer Architecture and Organization

Section: A

S. No.	Topic :- Logic Gates	Time Allotted:-
1.	Introduction Boolean algebra and Logic gates, Combinational logic blocks(Adders, Multiplexers, Encoders, de-coder), Sequential logic blocks(Latches, Flip-Flops, Registers, Counters) Store program control concept, Flynn's classification of computers (SISD, MISD, MIMD); Multilevel viewpoint of a machine: digital logic, micro architecture, ISA, operating systems, high level language; structured organization; CPU, caches, main memory, secondary memory units & I/O; Performance metrics; MIPS, MFLOPS.	05 min
2	 Division of the Topic NOT gate AND gate OR gate XOR gate What are digital circuits? NOR gate 	30
3.	Conclusion Through understanding of all logic gates ,all axioms of Boolean algebra was given And k maps were discussed in details.	10

Assignment to be given: - How to make XOR gate from NAND?

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Faculty: Parul Bansal

Lecture Plan 3

Class: ECS

Semester: IV

Course Code: CSE-210-F

Subject: Computer Architecture and Organization

Section: A

S. No.	Topic :- Logic Gates	Time Allotted:-
1.	Introduction Boolean algebra and Logic gates, Combinational logic blocks(Adders, Multiplexers, Encoders, de-coder), Sequential logic blocks(Latches, Flip-Flops, Registers, Counters) Store program control concept, Flynn's classification of computers (SISD, MISD, MIMD); Multilevel viewpoint of a machine: digital logic, micro architecture, ISA, operating systems, high level language; structured organization; CPU, caches, main memory, secondary memory units & I/O; Performance metrics; MIPS, MFLOPS.	05 min
2	Division of the Topic	
	Solving circuit expressions, examples	30
3.	Conclusion	10
	Examples of logic gates was discussed	

Assignment to be given: - Nil

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Doc. No.: DCE/0/15 Revision: 00

Lecture Plan 4

Faculty: Parul BansalSemester: IVClass: ECSCourse

Course Code: CSE-210-F

Subject: Computer Architecture and Organization

Section: A

S. No.	Topic :- Combinational logic blocks	Time Allotted:-
1.	Introduction Boolean algebra and Logic gates, Combinational logic blocks(Adders, Multiplexers, Encoders, de-coder), Sequential logic blocks(Latches, Flip-Flops, Registers, Counters) Store program control concept, Flynn's classification of computers (SISD, MISD, MIMD); Multilevel viewpoint of a machine: digital logic, micro architecture, ISA, operating systems, high level language; structured organization; CPU, caches, main memory, secondary memory units & I/O; Performance metrics; MIPS, MFLOPS.	05 min
2	 Division of the Topic NAND-only Logic circuits Integrated circuits An SSI chip contains independent NAND gates 	30
3.	Conclusion Introduction to integrated circuits	10

Assignment to be given: - what are integrated circuits?

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Doc. No.: DCE/0/15 Revision: 00

Faculty: Parul Bansal

Lecture Plan 5

Class: ECS

Course Code: CSE-210-F

Subject: Computer Architecture and Organization

Semester: IV

Section: A

S. No.	Topic :- Combinational logic blocks	Time Allotted:-
1.	Introduction Boolean algebra and Logic gates, Combinational logic blocks(Adders, Multiplexers, Encoders, de-coder), Sequential logic blocks(Latches, Flip-Flops, Registers, Counters) Store program control concept, Flynn's classification of computers (SISD, MISD, MIMD); Multilevel viewpoint of a machine: digital logic, micro architecture, ISA, operating systems, high level language; structured organization; CPU, caches, main memory, secondary memory units & I/O; Performance metrics; MIPS, MFLOPS.	05 min
2	 Division of the Topic Examples of Combinational circuits Decoder 2:4 Decoder 3:8 Decoder Gombinational Circuit Design with Decoders Multiplexers 	30
3.	Conclusion Introduction to Combinational logic blocks	10

Assignment to be given: - Draw 3:8 decoder truth table.

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Faculty: Parul Bansal

Lecture Plan 6

Class: ECS

Semester: IV

Course Code: CSE-210-F

Subject: Computer Architecture and Organization

Section: A

S. No.	Topic :- Sequential logic blocks	Time Allotted:-
1.	Introduction Boolean algebra and Logic gates, Combinational logic blocks(Adders, Multiplexers, Encoders, de-coder), Sequential logic blocks(Latches, Flip-Flops, Registers, Counters) Store program control concept, Flynn's classification of computers (SISD, MISD, MIMD); Multilevel viewpoint of a machine: digital logic, micro architecture, ISA, operating systems, high level language; structured organization; CPU, caches, main memory, secondary memory units & I/O; Performance metrics; MIPS, MFLOPS.	05 min
2	 Division of the Topic Overview Sequential Circuits Cross-coupled Inverters S-R Latch with NORs S-R Latch with NANDs D Latch Symbols for Latches 	30
3.	Conclusion Introduction to Sequential logic blocks	10

Assignment to be given: - What are sequential circuits?

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Faculty: Parul Bansal

Lecture Plan 7

Class: ECS

Semester: IV

Course Code: CSE-210-F

Subject: Computer Architecture and Organization

Section: A

S. No.	Topic :- Sequential logic blocks	Time Allotted:-
1.	Introduction Boolean algebra and Logic gates, Combinational logic blocks(Adders, Multiplexers, Encoders, de-coder), Sequential logic blocks(Latches, Flip-Flops, Registers, Counters) Store program control concept, Flynn's classification of computers (SISD, MISD, MIMD); Multilevel viewpoint of a machine: digital logic, micro architecture, ISA, operating systems, high level language; structured organization; CPU, caches, main memory, secondary memory units & I/O; Performance metrics; MIPS, MFLOPS.	05 min
2	 Division of the Topic Overview Register with Parallel Load Register with Load Control Shift Registers Parallel Data Transfer 	30
3.	Conclusion Examples of Sequential logic blocks	10

Assignment to be given: - Explain shift registers by example

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Doc. No.: DCE/0/15 Revision: 00

Lecture Plan 8

Faculty: Parul BansalSemester: IVClass: ECSCourse Code: CSE-210-F

Subject: Computer Architecture and Organization

Section: A

S. No.	Topic :- Stored Program Concept	Time Allotted:-
1.	Introduction Boolean algebra and Logic gates, Combinational logic blocks(Adders, Multiplexers, Encoders, de-coder), Sequential logic blocks(Latches, Flip-Flops, Registers, Counters) Store program control concept, Flynn's classification of computers (SISD, MISD, MIMD); Multilevel viewpoint of a machine: digital logic, micro architecture, ISA, operating systems, high level language; structured organization; CPU, caches, main memory, secondary memory units & I/O; Performance metrics; MIPS, MFLOPS.	05 min
2	 Division of the Topic Stored program concept Design of the von Neumann architecture 	30
3.	Conclusion Introduction to Stored Program Concept	10

Assignment to be given: - What is von Neumann architecture

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Course Code: CSE-210-F

Section: A

Faculty: Parul Bansal

Semester: IV

Class: ECS

Subject: Computer Architecture and Organization

Time S. No. Topic :- Flynn's Classification Allotted:-1. Introduction Boolean algebra and Logic gates, Combinational logic blocks(Adders, Multiplexers, 05 min Encoders, de-coder), Sequential logic blocks(Latches, Flip-Flops, Registers, Counters) Store program control concept, Flynn's classification of computers (SISD, MISD, MIMD); Multilevel viewpoint of a machine: digital logic, micro architecture, ISA, operating systems, high level language; structured organization; CPU, caches, main memory, secondary memory units & I/O; Performance metrics; MIPS, MFLOPS. 2 Division of the Topic Flynn's classification of computers 30 SIMD Computer System MISD Computer System MIMD Computer System 3. Conclusion 10 Introduction to Flynn's classification of computers

Assignment to be given: - Differentiate SIMD and MISD.

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Course Code: CSE-210-F

Faculty: Parul Bansal

Semester: IV

Class: ECS

Subject: Computer Architecture and Organization

Section: A

S. No.	Topic :- Multilevel viewpoint	Time Allotted:-
1.	Introduction Boolean algebra and Logic gates, Combinational logic blocks(Adders, Multiplexers, Encoders, de-coder), Sequential logic blocks(Latches, Flip-Flops, Registers, Counters) Store program control concept, Flynn's classification of computers (SISD, MISD, MIMD); Multilevel viewpoint of a machine: digital logic, micro architecture, ISA, operating systems, high level language; structured organization; CPU, caches, main memory, secondary memory units & I/O; Performance metrics; MIPS, MFLOPS.	05 min
2	 Division of the Topic Multilevel View Point of A Machine The Computer Level Hierarchy Hardwired Control Micro programmed Control Instruction Set Architecture (ISA) Actual Multilevel Computer 	30
3.	Conclusion Introduction to Multilevel viewpoint	10

Assignment to be given: - What is ISA?

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Course Code: CSE-210-F

Faculty: Parul Bansal

Semester: IV

Class: ECS

Subject: Computer Architecture and Organization

Section: A

S. No.	Topic :- Multilevel viewpoint	Time Allotted:-
1.	Introduction Boolean algebra and Logic gates, Combinational logic blocks(Adders, Multiplexers, Encoders, de-coder), Sequential logic blocks(Latches, Flip-Flops, Registers, Counters) Store program control concept, Flynn's classification of computers (SISD, MISD, MIMD); Multilevel viewpoint of a machine: digital logic, micro architecture, ISA, operating systems, high level language; structured organization; CPU, caches, main memory, secondary memory units & I/O; Performance metrics; MIPS, MFLOPS.	05 min
2	 Division of the Topic Operating System Machine What is an OS Goal of OS Instruction Set Representation Instruction Formats Registers CPU 	30
3.	Conclusion Details of Multilevel viewpoint	10

Assignment to be given: - Nil

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Course Code: CSE-210-F

Faculty: Parul Bansal

Semester: IV

Class: ECS

Subject: Computer Architecture and Organization

Section: A

S. No.	Topic :- Performance Metrics	Time Allotted:-
1.	Introduction Boolean algebra and Logic gates, Combinational logic blocks(Adders, Multiplexers, Encoders, de-coder), Sequential logic blocks(Latches, Flip-Flops, Registers, Counters) Store program control concept, Flynn's classification of computers (SISD, MISD, MIMD); Multilevel viewpoint of a machine: digital logic, micro architecture, ISA, operating systems, high level language; structured organization; CPU, caches, main memory, secondary memory units & I/O; Performance metrics; MIPS, MFLOPS.	05 min
2	 Division of the Topic What is a performance metric? Performance Measures MFLOPS 	30
3.	Conclusion Details of Performance Metrics	10

Assignment to be given: - What are MFLOPS?

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Course Code: CSE-210-F

Faculty: Parul BansalSemester: IV

Class: ECS

Subject: Computer Architecture and Organization

Section: B

S. No.	Topic :- CISC	Time Allotted:-
1.	Introduction Instruction set based classification of processors (RISC, CISC, and their comparison); addressing modes: register, immediate, direct, indirect, indexed; Operations in the instruction set; Arithmetic and Logical, Data Transfer, Control Flow; Instruction set formats (fixed, variable, hybrid); Language of the machine: 8086 ; simulation using MSAM.	05 min
2	 Division of the Topic Instruction Format Instruction Representation CISC CISC Attributes CISC Characteristics 	30
3.	Conclusion Introduction to CISC architecture	10

Assignment to be given: - Nil

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Class: ECS

Semester: IV

Course Code: CSE-210-F

Subject: Computer Architecture and Organization

Faculty: Parul Bansal

Section: B

Time S. No. **Topic :-** RISC Allotted:-1. Introduction Instruction set based classification of processors (RISC, CISC, and their comparison); 05 min addressing modes: register, immediate, direct, indirect, indexed; Operations in the instruction set; Arithmetic and Logical, Data Transfer, Control Flow; Instruction set formats (fixed, variable, hybrid); Language of the machine: 8086; simulation using MSAM. 2 Division of the Topic What is **RISC**? 30 **OVERLAPPED REGISTER WINDOWS** CISC versus RISC 3. Conclusion 10 Introduction to RISC architecture

Assignment to be given: - Compare CISC and RISC

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Course Code: CSE-210-F

Faculty: Parul BansalSemester: IV

Class: ECS

Subject: Computer Architecture and Organization

Section: B

S. No.	Topic :- Addressing modes	Time Allotted:-
1.	Introduction Instruction set based classification of processors (RISC, CISC, and their comparison); addressing modes: register, immediate, direct, indirect, indexed; Operations in the instruction set; Arithmetic and Logical, Data Transfer, Control Flow; Instruction set formats (fixed, variable, hybrid); Language of the machine: 8086 ; simulation using MSAM.	05 min
2	 Division of the Topic Central Processing Unit Addressing modes Numerical example Immediate Mode Indirect Mode Indexing Mode Relative Mode 	30
3.	Conclusion Introduction to addressing modes	10

Assignment to be given: - Explain indirect addressing

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Faculty: Parul BansalSemester: IVClass: ECSCourse Code: CSE-210-F

Subject: Computer Architecture and Organization

Section: B

S. No.	Topic :- Instruction Set Formats	Time Allotted:-
1.	Introduction Instruction set based classification of processors (RISC, CISC, and their comparison); addressing modes: register, immediate, direct, indirect, indexed; Operations in the instruction set; Arithmetic and Logical, Data Transfer, Control Flow; Instruction set formats (fixed, variable, hybrid); Language of the machine: 8086 ; simulation using MSAM.	05 min
2	 Division of the Topic Central Processing Unit Instruction Formats Three address instruction Two address instruction One address instruction Zero address instruction 	30
3.	Conclusion Introduction to Instruction Set Formats	10

Assignment to be given: - Nil

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Faculty: Parul BansalSemester: IVClass: ECS

Course Code: CSE-210-F

Subject: Computer Architecture and Organization

Section: C

S. No.	Topic :- CPU Architecture Types	Time Allotted:-
1.	Introduction CPU Architecture types (accumulator, register, stack, memory/ register) detailed data path of a typical register based CPU, Fetch-Decode-Execute cycle (typically 3 to 5 stage); microinstruction sequencing, implementation of control unit, Enhancing performance with pipelining. The need for a memory hierarchy (Locality of reference principle, Memory hierarchy in practice: Cache, main memory and secondary memory, Memory parameters: access/ cycle time, cost per bit); Main memory (Semiconductor RAM & ROM organization, memory expansion, Static & dynamic memory types); Cache memory (Associative & direct mapped cache organizations. Division of the Topic	05 min
	 (Central Processing Unit) CPU Introduction CPU Organization Accumulator based CPU CPU Organization Register based CPU CPU CPU General Register Organization Stack organisation 	30
3.	Conclusion	10
	Introduction to CPU Architecture Types was given	

Assignment to be given: - Explain stack organisation

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Faculty: Parul BansalSemester: IVClass: ECS

Course Code: CSE-210-F

Subject: Computer Architecture and Organization

Section: C

S. No.	Topic :- Fetch decode execute cycle	Time Allotted:-
1.	Introduction CPU Architecture types (accumulator, register, stack, memory/ register) detailed data path of a typical register based CPU, Fetch-Decode-Execute cycle (typically 3 to 5 stage); microinstruction sequencing, implementation of control unit, Enhancing performance with pipelining. The need for a memory hierarchy (Locality of reference principle, Memory hierarchy in practice: Cache, main memory and secondary memory, Memory parameters: access/ cycle time, cost per bit); Main memory (Semiconductor RAM & ROM organization, memory expansion, Static & dynamic memory types); Cache memory (Associative & direct mapped cache organizations. Division of the Topic	05 min
	 Instruction cycle Fetch and decode Register reference instructions Memory reference instructions Flowchart for memory reference instructions Input-output and interrupt 	30
3.	Conclusion	10
	Introduction to Fetch decode execute cycle was given	

Assignment to be given: - Nil

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Faculty: Parul BansalSemester: IVClass: ECS

Course Code: CSE-210-F

Subject: Computer Architecture and Organization

Section: C

S. No.	Topic :- Fetch decode execute cycle	Time Allotted:-
1.	Introduction CPU Architecture types (accumulator, register, stack, memory/ register) detailed data path of a typical register based CPU, Fetch-Decode-Execute cycle (typically 3 to 5 stage); microinstruction sequencing, implementation of control unit, Enhancing performance with pipelining. The need for a memory hierarchy (Locality of reference principle, Memory hierarchy in practice: Cache, main memory and secondary memory, Memory parameters: access/ cycle time, cost per bit); Main memory (Semiconductor RAM & ROM organization, memory expansion, Static & dynamic memory types); Cache memory (Associative & direct mapped cache organizations. Division of the Topic	05 min
	 Program controlled data transfer Input-output instructions Program-controlled input/output Interrupt initiated input/output Flowchart for interrupt cycle Register transfer operations in interrupt cycle 	30
3.	Conclusion	10
	Introduction to Fetch decode execute cycle was given	

Assignment to be given: - Nil

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Course Code: CSE-210-F

Faculty: Parul Bansal

S. No. | Topic :- Memory hierarchy

Semester: IV

Class: ECS

Subject: Computer Architecture and Organization

Section: C Time Allotte

		Anotted:-
1.	Introduction CPU Architecture types (accumulator, register, stack, memory/ register) detailed data path of a typical register based CPU, Fetch-Decode-Execute cycle (typically 3 to 5 stage); microinstruction sequencing, implementation of control unit, Enhancing performance with pipelining. The need for a memory hierarchy (Locality of reference principle, Memory hierarchy in practice: Cache, main memory and secondary memory, Memory parameters: access/ cycle time, cost per bit); Main memory (Semiconductor RAM & ROM organization, memory expansion, Static & dynamic memory types); Cache memory (Associative & direct mapped cache organizations. Division of the Topic	05 min
	 Memory organization Memory hierarchy Main memory Memory address map Connection of memory to cpu Auxiliary memory Associative memory 	30
3.	Conclusion	10
	Introduction to Memory hierarchy was given	
1		

Assignment to be given: - Nil

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Course Code: CSE-210-F

Section: D

Faculty: Parul Bansal

Semester: IV

Class: ECS

Subject: Computer Architecture and Organization

Time S. No. **Topic :-** Parallelism Allotted:-1. Introduction Goals of parallelism (Exploitation of concurrency, throughput enhancement); 05 min Amdahl's law; Instruction level parallelism (pipelining, super scaling -basic features); Processor level parallelism (Multiprocessor systems overview). Instruction codes, computer register, computer instructions, timing and control, instruction cycle, type of instructions, memory reference, register reference. I/O reference, Basics of Logic Design, accumulator logic, Control memory, address micro-instruction formats. micro-program sequencer. sequencing, Stack Organization, Instruction Formats, Types of interrupts; Memory Hierarchy, 2 Division of the Topic Goals of Parallelism 30 **Exploitation of Concurrency** Types of Parallelism **Instruction Pipeline** Four segment CPU Pipeline Timing of Instruction Pipeline **Pipeline Conflicts** Instruction-level parallelism (ILP) 10 Processor Level Parallelism 3. Conclusion Introduction to parallelism was given

Assignment to be given: - What are the Goals of Parallelism

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Faculty: Parul BansalSemester: IVClass: ECSCo

Course Code: CSE-210-F

Section: D

Subject: Computer Architecture and Organization

Time S. No. Topic :- Amdahl's Law Allotted:-1. Introduction Goals of parallelism (Exploitation of concurrency, throughput enhancement); 05 min Amdahl's law; Instruction level parallelism (pipelining, super scaling -basic features): Processor level parallelism (Multiprocessor systems overview). Instruction codes, computer register, computer instructions, timing and control, instruction cycle, type of instructions, memory reference, register reference. I/O reference, Basics of Logic Design, accumulator logic, Control memory, address sequencing. micro-instruction formats, micro-program sequencer. Stack Organization, Instruction Formats, Types of interrupts; Memory Hierarchy. 2 Division of the Topic Amdahl's law 30 **Basic Page Replacement** Modes of transfer Programmed I/O Interrupt Initiated IO Types of Interrupt DMA (Direct Memory Access) 3. Conclusion 10 Introduction to Amdahl's Law was given

Assignment to be given: - Nil

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Faculty: Parul BansalSemester: IVClass: ECS

Course Code: CSE-210-F

Section: D

Subject: Computer Architecture and Organization

S. No.	Topic :- Control Unit	Time Allotted:-
1.	Introduction Goals of parallelism (Exploitation of concurrency, throughput enhancement); Amdahl's law; Instruction level parallelism (pipelining, super scaling –basic features); Processor level parallelism (Multiprocessor systems overview). Instruction codes, computer register, computer instructions, timing and control, instruction cycle, type of instructions, memory reference, register reference. I/O reference, Basics of Logic Design, accumulator logic, Control memory, address sequencing, micro-instruction formats, micro-program sequencer, Stack Organization, Instruction Formats, Types of interrupts; Memory Hierarchy. Division of the Topic	05 min
3.	 Control unit Timing and control Timing signals Pipelining and vector processing Parallel processing Pipeline and multiple function units Instruction cycle Conclusion 	30
	Introduction to control unit was given	

Assignment to be given: - Nil

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Faculty: Parul BansalSemester: IVClass: ECSCourse

Course Code: CSE-210-F

Subject: Computer Architecture and Organization

Section: D

S. No.	Topic :- Memory reference	Time Allotted:-
1.	Introduction Goals of parallelism (Exploitation of concurrency, throughput enhancement); Amdahl's law; Instruction level parallelism (pipelining, super scaling –basic features); Processor level parallelism (Multiprocessor systems overview). Instruction codes, computer register, computer instructions, timing and control, instruction cycle, type of instructions, memory reference, register reference. I/O reference, Basics of Logic Design, accumulator logic, Control memory, address sequencing, micro-instruction formats, micro-program sequencer, Stack Organization, Instruction Formats, Types of interrupts; Memory Hierarchy. Division of the Topic	05 min
	 Common bus system Computer instructions Memory reference instruction Register reference instruction Input-output instruction 	30
3.	Conclusion	10
	Introduction to memory reference was given	

Assignment to be given: - What is Memory reference instruction?

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Doc. No.: DCE/0/15 Revision: 00

Lecture Plan 25

Faculty: Parul BansalSemester: IVClass: ECS

Course Code: CSE-210-F

Subject: Computer Architecture and Organization

Section: D

S. No.	Topic :- Microinstruction sequencing	Time Allotted:-
1.	Introduction Goals of parallelism (Exploitation of concurrency, throughput enhancement); Amdahl's law; Instruction level parallelism (pipelining, super scaling –basic features); Processor level parallelism (Multiprocessor systems overview). Instruction codes, computer register, computer instructions, timing and control, instruction cycle, type of instructions, memory reference, register reference. I/O reference, Basics of Logic Design, accumulator logic, Control memory, address sequencing, micro-instruction formats, micro-program sequencer, Stack Organization, Instruction Formats, Types of interrupts; Memory Hierarchy. Division of the Topic	05 min
	 Microprogrammed control Comparison of control unit implementations Microinstruction sequencing Conditional branch Mapping of instructions Microprogram example 	30
3.	Conclusion Introduction to Microinstruction sequencing was given	

Assignment to be given: - Nil

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Course Code: CSE-210-F

Faculty: Parul Bansal

Semester: IV

Class: ECS

Subject: Computer Architecture and Organization

Section: D

S. No.	Topic :- Microinstruction sequencing	Time Allotted:-
1.	Introduction Goals of parallelism (Exploitation of concurrency, throughput enhancement); Amdahl's law; Instruction level parallelism (pipelining, super scaling –basic features); Processor level parallelism (Multiprocessor systems overview). Instruction codes, computer register, computer instructions, timing and control, instruction cycle, type of instructions, memory reference, register reference. I/O reference, Basics of Logic Design, accumulator logic, Control memory, address sequencing, micro-instruction formats, micro-program sequencer, Stack Organization, Instruction Formats, Types of interrupts; Memory Hierarchy. Division of the Topic	05 min
	 Machine instruction format Microinstruction field descriptions Symbolic microinstructions Symbolic microprogram Design of control unit Microprogram sequencer Nanostorage and nanoinstruction 	30
3.	Conclusion Introduction to Microinstruction sequencing was given	

Assignment to be given: - Nil

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Course Code: CSE-210-F

Section: D

Faculty: Parul Bansal

Semester: IV

Class: ECS

Subject: Computer Architecture and Organization

Time S. No. **Topic :-** 8086 Allotted:-1. Introduction Goals of parallelism (Exploitation of concurrency, throughput enhancement); 05 min Amdahl's law; Instruction level parallelism (pipelining, super scaling -basic features); Processor level parallelism (Multiprocessor systems overview). Instruction codes, computer register, computer instructions, timing and control, instruction cycle, type of instructions, memory reference, register reference. I/O reference, Basics of Logic Design, accumulator logic, Control memory, address micro-instruction formats. micro-program sequencer. sequencing, Stack Organization, Instruction Formats, Types of interrupts; Memory Hierarchy. 2 Division of the Topic Features of 8086 Microprocessor 30 8086 microprocessor 20 bits address bus? 8086 INTERNAL ARCHITECTURE BIU and EU Pin diagram 3. Conclusion 10 Introduction to 8086 microprocessor was given

Assignment to be given: - What is BIU?

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Course Code: CSE-210-F

Section: D

Faculty: Parul Bansal

Semester: IV

Class: ECS

Subject: Computer Architecture and Organization

Time S. No. **Topic :-** 8086 registers Allotted:-1. Introduction Goals of parallelism (Exploitation of concurrency, throughput enhancement); 05 min Amdahl's law; Instruction level parallelism (pipelining, super scaling -basic features); Processor level parallelism (Multiprocessor systems overview). Instruction codes, computer register, computer instructions, timing and control, instruction cycle, type of instructions, memory reference, register reference. I/O reference, Basics of Logic Design, accumulator logic, Control memory, address micro-instruction formats. micro-program sequencer. sequencing, Stack Organization, Instruction Formats, Types of interrupts; Memory Hierarchy. 2 Division of the Topic Registers 30 Code segment Stack segment Data segment Extra segment Accumulator **Base Register Count Register** 10 Data Register Index registers Flags 3. Conclusion Introduction to 8086 registers was given

Assignment to be given: - What is the function of code segment?

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Course Code: CSE-210-F

Faculty: Parul Bansal

Semester: IV

Class: ECS

Subject: Computer Architecture and Organization

Section: D

S. No.	Topic :- 8086 instructions	Time Allotted:-
1.	Introduction Goals of parallelism (Exploitation of concurrency, throughput enhancement); Amdahl's law; Instruction level parallelism (pipelining, super scaling –basic features); Processor level parallelism (Multiprocessor systems overview). Instruction codes, computer register, computer instructions, timing and control, instruction cycle, type of instructions, memory reference, register reference. I/O reference, Basics of Logic Design, accumulator logic, Control memory, address sequencing, micro-instruction formats, micro-program sequencer, Stack Organization, Instruction Formats, Types of interrupts; Memory Hierarchy. Division of the Topic	05 min
	 8086 instruction set Addressing modes Data Transfer Instructions Logical Instructions Shift and Rotate Instructions Arithmetic Instructions Transfer Instructions Loop Control String Instructions Repeat instructions Processor Control Instructions 	30
3.	Conclusion Introduction to 8086 instructions was given	

Assignment to be given: - Nil

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes

Course Code: CSE-210-F

Faculty: Parul Bansal

Semester: IV

Class: ECS

Subject: Computer Architecture and Organization

Section: D

S. No.	Topic :- 8086 timing & control	Time Allotted:-
1.	Introduction Goals of parallelism (Exploitation of concurrency, throughput enhancement); Amdahl's law; Instruction level parallelism (pipelining, super scaling –basic features); Processor level parallelism (Multiprocessor systems overview). Instruction codes, computer register, computer instructions, timing and control, instruction cycle, type of instructions, memory reference, register reference. I/O reference, Basics of Logic Design, accumulator logic, Control memory, address sequencing, micro-instruction formats, micro-program sequencer, Stack Organization, Instruction Formats, Types of interrupts; Memory Hierarchy. Division of the Topic	05 min
	 Microprocessors-8086 Microcomputer 8086 buses Machine cycle Timing sequence Read cycle Write cycle 	30
3.	Conclusion Introduction to 8086 timing & control was given	

Assignment to be given: - Draw read & write cycles.

- Computer system architecture by Morris Mano.
- Computer architecture and organization by John P Hayes