
Lecture Plan 1

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-I

S. No.
Topic :-Introduction to compiler, subject overview, Translator, Need of

Translator

Time

Allotted:-

1. Introduction to subject

Definition of compiler.

Difference between compiler and translator.

5min

5

10

20

10

2 Division of the Topic

Compilation and execution.

Other Translators.

Need for Translators.-Symbolic Assembly lang.

 Macros

 High Level Languages.

3. Conclusion

 Types of languages and diff bet. Translators –assemblers, interpreter and compiler

4 Question / Answer

Nil

Assignment to be given:-

nil

Reference Readings:-

Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman.

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 2

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-I

S. No. Topic :-Structure of Compiler, Passes
Time

Allotted:-

1. Introduction

Compiler is v complex in structure so we dVIIide it into a no. of passes ,each pass

performs its own functions we discuss these passes here.

.

5min

20

10

10

5

2 Division of the Topic

. phase-Lexical,syntax,intermediate code generation, code optimization and code

generation

Passes-definition, method to reduce the no. of passes(back patching)

3. Conclusion

 Discussed general structure of compiler.

4 Question / Answer

Difference bet. Phases and passes.

Assignment to be given:-

nil

Reference Readings:-

Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman.

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 3

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-I

S. No.
Topic :-Lexical Analysis, Syntax Analysis, Intermediate code generator,

Optimization.

Time

Allotted:-

1. Introduction

Revision of last class.

5

10

10

10

10

5

5

2 Division of the Topic

Lexical Analysis-tokens(definition, finding the no. of tokens in an expression)

Syntax Analysis-checking patterns of tokens, checking syntax of operators.

Intermediate code generation-three address code, parse tree, two address code

Optimization-local optimization, loop optimization

3. Conclusion

Discussed about each phase of compiler with e.g.

4 Question / Answer

Find no. of tokens in statement

While A>B & A<=2*B-5 do A=A+B

Assignment to be given:-

Explain the phases of compiler with block diagram.

Reference Readings:-

Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 4

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-I

S. No. Topic :-Code Generation, Bookkeeping, Compiler,Writing tools, Bootstrapping.
Time

Allotted:-

1. Introduction

Revision of various phases of compiler and detailed study of code generation,

bookkeeping and error handler phase

5

10

10

10

10

5

5

2 Division of the Topic

1) Code generation Conversion from high level code to assembly code m/c

2) Bookkeeping-how compiler store the record of tokens

3)Error handler –discussion about the possible error in each phase

4)Compiler writing tool-Compiler- compiler, Compiler generator, Translator writing

system

5)Boot Strapping.

3. Conclusion

All phases of compiler were discussed in details, using boot strapping method or

cross compiling we can easily generate new compilers.

4 Question / Answer

Tell one error for each phase.

Assignment to be given:-

What is cross compiling and bootstrapping and difference between them.

Reference Readings:-

Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/15

Revision : 00

Lecture Plan 5

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-II

S. No. Topic:-Role of Lexical Analyser, Design of Lexical Analysis.
Time

Allotted:-

1. Introduction

Lexical analyzer is the first phase of compiler it takes the source prog as input and

produce tokens in output.

5

10

10

10

5

10

2 Division of the Topic

Need of lexical analysis

Input buffering

Method for designing lexical analyzer and implementation of lexical analyzer.

3. Conclusion

After this lecture we can find the no. of tokens in prog..and we have discussed about

the parse tree form by using these tokens.

4 Question / Answer

What are token and different types of tokens?

Assignment to be given:-

nil

Reference Readings:-

Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 6

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-II

S. No. Topic :-Regular Exp., NFA, DFA
Time

Allotted:-

1. Introduction

Regular expressions are used as a source prog. For compiler writing tools like

LEX,YACC

5

10

10

10

5

2 Division of the Topic

Strings and languages

Regular expressions-definition

Finite Automata-NFA,DFA

3. Conclusion

Finite Automata are mathematical models of a m/c and we use reg. expressions as

input for these m/c.These are used in first phase of compiler

4 Question / Answer

Basic characteristics of NFA and DFA.

Assignment to be given:-

nil

Reference Readings:-

Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 7

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-II

S. No.
Topic :-Conversion from Regular Exp to NFA, NFA to DFA, Minimization of

DFA.

Time

Allotted:-

1. Introduction

We can easily convert a regular expression into NFA and vice versa These are helpful

for selecting the source lang. of compiler.

5

10

10

10

5

10

2 Division of the Topic

1) Rules for converting Regular expression to NFA

2) Method for converting NFA to DFA

3) Methods for minimizing the no. of states.

3. Conclusion

All topics were covered with examples.

4 Question / Answer

Make NFA from given regular expressions

(0+1)*011(011)*

(011+110+0+1)*

Assignment to be given:-

110*(110+000)*

Reference Readings:-

Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 8

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-II

S. No. Topic :-LEX, Implementation of Lexical Analyzer.
Time

Allotted:-

1. Introduction

Lex is a tool which is used to make lexical analyzers it takes a source prog. In form of

reg. expressions as input and produce a lexical analyzer phase as output.

5

10

10

20

5

2 Division of the Topic

Lex –auxiliary definitions

Translation rules

Implementation of lexical analyzer.

3. Conclusion

Using Lex we generate lexical analyzer.

4 Question / Answer

nil

Assignment to be given:-

nil

Reference Readings:-

Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 9

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-III

S. No. Topic:-Introduction to Grammar, Type of Grammar, Context free Grammar.
Time

Allotted:-

1. Introduction

A grammar involves four quan.- terminals, on terminals, start symbols and

productions.

5

10

10

10

5

5

2 Division of the Topic

Definition of grammar

Context free grammar

Left and right derivations and parse trees

3. Conclusion

All topics were covered successfully.

4 Question / Answer

For the given reg. exp. (a/b)(a/b/0/1)* Generate a context free grammar.

Assignment to be given:-

nil

Reference Readings:-

Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 10

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-I

S. No. Topic:-Parse Tree, Ambiguity.
Time

Allotted:-

1. Introduction

Parse tree is the pictorial representation for a gVIIen string, derVIIed from a grammar

and if a grammar generates more than one parse tree for a single string then it ios

called ambiguous grammar.

20

20

5

5

2 Division of the Topic

Ambiguous grammar, methods for remove bg ambiguity of grammar

Examples.

3. Conclusion

We can remove the ambiguity of the grammar so that there is a single step for the

syntax analyzer phase to proceed in checking the syntax of the grammar.

4 Question / Answer

Statif cond then stat

 |if cond then stat else stat

 |other stat.

Assignment to be given:-

nil

Reference Readings:-

Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 11

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-I

S. No.
Topic :-Capabilities of context free grammar Regular Exp. Vs Context free

grammar

Time

Allotted:-

1. Introduction

There is method for converting a reg exp. Into context free grammar.

5

10

10

10

5

10

2 Division of the Topic

Reg exp verses context free grammar

Egs of context free grammar

Non context free Lang constructs

3. Conclusion

All topics were covered with egs.

4 Question / Answer

Check whether lang L={wcw|w is in (a/b)* is context free lang or not.

Assignment to be given:-

nil

Reference Readings:-

Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 12

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-I

S. No. Topic :-Introduction to parser, Representation of parse tree
Time

Allotted:-

1. Introduction

Parser or syntax analyzer is the second phase of compiler it takes tokens as input and

produce parse tree. as o/p

5

10

10

10

5

10

2 Division of the Topic

Introduction to the parser

Type of parser

Representation of parse tree.

3. Conclusion

Parse tree was discussed in class and problems related to it were solved.

4 Question / Answer

Consider the grammar-

SiCtS

SiCtSeS

Sa

Cb Generate parse tree for iw=ibtibtaea

Assignment to be given:-

nil

Reference Readings:-

Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 13

Faculty:- Semester:-VII Class:-CSE I,CSEII Course

Code:- CSE-403-C

Subject:-Compiler Designing Unit:-VII

S. No. Topic :-Shift reduce Parser, Handle, Handle pruning.
Time

Allotted:-

1. Introduction

Shift reduce parser uses bottom up approach means we start from the word and

generate parse tree in reverse. If we reach up to start symbol then the word is

recognized otherwise not

5

10

10

10

5

10

2 Division of the Topic

Shift reduce parser

Handle

Handle pruning.

3. Conclusion

Handles are used to reduce the given words upto its start symbol ,first we find

handles and then we replace them from the production rules used in grammar.

4 Question / Answer

What is handle, handle pruning.

Assignment to be given:-

Nil.

Reference Readings:-

Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/15

Revision : 00

Lecture Plan 14

Faculty:- Semester:-VII Class:-CSE I,CSEII Course

Code:- CSE-403-C

Subject:-Compiler Designing Unit:-VII

S. No. Topic :-Stack Implementation of shift Reduce parser.
Time

Allotted:-

1. Introduction

In last lecture we discussed about shift reduce parser here we study the method how

to implement a shift reduce parser

10

10

10

5

15

2 Division of the Topic

Implementation of shift reduce parser-There are four actions

1)shift

2) Reduce

3) Accept

4) Error.

3. Conclusion

Shift reduce parser is completed

4 Question / Answer

Consider the grammar-

 EE+E

EE*E

E(E)

Eid

Make a shift reduce parser for the i/p string id +id*id

Assignment to be given:-

nil

Reference Readings:-

Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/15

Revision : 00

Lecture Plan 15

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-VII

S. No. Topic:-Operator Precedence Parsing.
Time

Allotted:-

1. Introduction

There are some grammars that don’t have productions in which there E on right hand

side or has two adjacent no terminals these grammars are called operator grammars

and we generates a parser for these by using operator precede4nce parsing method.

5

10

10

10

10

5

2 Division of the Topic

1)Operator grammar

2)Operator precedence relations

3)operator precedence relations from associatively and precedence

4)operator precedence parsing algo.

3. Conclusion

Operator precedence parser is used to generate parse tree for operator grammar.

4 Question / Answer

What is leading(A) and trailing(A)

Assignment to be given:-

nil

Reference Readings:-

Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 16

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-VII

S. No. Topic:-.Top down parsing
Time

Allotted:-

1. Introduction

Top down parsing starts from the starting symbol and find the word after applying a

no. of productions.

.

5

10

10

10

10

2 Division of the Topic

1) Backtracking.

2) Left recursion, Elimination of left recursion.

3)Recursive descent parsing

4) Left factoring.

3. Conclusion

Top down parser are good but there is problem of backtracking

4 Question / Answer

Nil

Assignment to be given:-

nil

Reference Readings:-

Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 17

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-VII

S. No. Topic:-.Predictive parser.
Time

Allotted:-

1. Introduction

PredictVe parser is helpful to implement recursive descent parsing it is type of top

down parsing.

.

5

20

20

5

2 Division of the Topic

Predictive parser-first and follow

Method for constructing predictive parsing table.

3. Conclusion

All the parsers are discussed with numerical egs.

4 Question / Answer

Nil

Assignment to be given:-

nil

Reference Readings:-

Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 18

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-VII

S. No. Topic :-LR parsers.
Time

Allotted:-

1. Introduction

These parsers scans from left to right and constructs a rightmost derivation in reverse

It consists of two parts a driver routine and a parsing table. These are of three types.

Drivng routine is same for all while parsing table is different.

5

20

20

5

2 Division of the Topic

LR parser-Definition

Working-1.shift 2 Reduce 3 Accept 4 Error.

Eg.

3. Conclusion

Out of three types SLR parsers are simple but having v. large table size .Canonical

LR parsers are the best.

We will discuss all these in next lectures.

4 Question / Answer

Nil

Assignment to be given:-

Reference Readings:- Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/15

Revision : 00

Lecture Plan 19

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-VII

S. No. Topic:-SLR parsers.
Time

Allotted:-

1. Introduction

These parsers scans from left to right and constructs a rightmost derVIIation in

reverse

It consists of two parts a driver routine and a parsing table

5

20

15

5

5

2 Division of the Topic

1) LR (0) Items –Clousre,GOTO,Set of item construction

2) Method for constructing SLR parsing table.

3) Example

3. Conclusion

SLR was taught successfully.

4 Question / Answer

nil

Assignment to be gVIIen:-nil

Reference Readings:- Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 20

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-VII

S. No. Topic :-CANONICAL LR,LALR
Time

Allotted:-

1. Introduction

Canonical LR parser is most powerful among all three parsers.

To max space utilization we convert canonical LR parser to LALR parser but it is

time consuming.

5

10

10

10

10

5

2 Division of the Topic

Method for constructing canonical LR parsing table.

1)Closure(I)

2)GOTO(I,X)

3) Method for table. Construction.

Method for constructing LALR parsing table

3. Conclusion

All topics are covered in details.

4 Question / Answer

nil

Assignment to be gVIIen:-

Reference Readings:- Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 21

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-V

S. No. Topic:-Syntax directed translation scheme.
Time

Allotted:-

1. Introduction

We will discuss here different types of intermediate codes generation methods.

Syntax directed translation scheme allow some semantic actions are to be attached

with context free grammar. If any production rules match by syntax analyzer phase

then the action attached with that production takes place

5

20

20

5

2 Division of the Topic

1) Syntax directed translation schemes-Semantic actions, translation on parse tree.

2)Implementation of syntax directed translation

3. Conclusion

Intermediate codes are helpful in making the programs easier to understand

Like we can convert high level Lang into assembly codes which are easier to

understand by translator

4 Question / Answer

nil

Assignment to be given:-nil

Reference Readings:- Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 22

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-VII

S. No. Topic: Three Address Codes, Quadrapples, Triples.
Time

Allotted:-

1. Introduction

These are types of intermediate codes .In three address codes each statement is

converted into an equivalent statement having three addresses.

5

10

10

10

10

5

2 Division of the Topic

Three address codes

Quadruples

Triples

Indirect triples.

3. Conclusion

Using these methods each statement of high level Lang is converted into intermediate

codes.

4 Question / Answer

nil

Assignment to be given:-nil

Reference Readings:- Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/15

Revision : 00

Lecture Plan 23

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-VI

S. No. Topic :-Content of symbol table
Time

Allotted:-

1. Introduction

Symbol Tables are used to store different tokens and special symbols with their

attributes. Symbol tables are used by each phase of complier every phase can take

input from symbol tables and store its output in it

5

15

15

10

2

3

2 Division of the Topic

1) Contents of symbol table

2) Names and symbol table records

3) Reusing symbol table records

3. Conclusion

Symbol tables can be stored in a no. of ways. We generally stores token names there

types and there values .There should be easy methods to store and retrieve records

from symbol tables.

4 Question / Answer

What is symbol table?

Assignment to be given:-nil

Reference Readings:- Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 24

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-VII

S. No. Topic:-Data Structure for symbol tables.
Time

Allotted:-

1. Introduction

We can implement symbol tables by using diff. data structures. There are a no. of

methods are gVIIen below.

5

5

5

5

5

10

5

10

2 Division of the Topic

1. List

2. Self organizing list.

3. Search trees

4. Hash table

5. Representation scope information.

3. Conclusion

Each method has its own adv. And disadvantage. We use methods according to our

size of data but search tree and hash tables’ gVIIes best. Results in terms of time.]

4 Question / Answer

What are search trees and hash tables.

Assignment to be given:-nil

Reference Readings:- Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 25

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-VII

S. No. Topic:-Error detection and recovery.
Time

Allotted:-

1. Introduction

Prog. Submitted to compiler may contain a no. of errors and there could be a no. of

errors generated during various phases .To handle these types of errors Error handler

phase is helpful.

5

2 Division of the Topic

Error-Definition, Reporting errors ,source of errors

Syntactic errors

 Semantic errors

 Dynamic errors

3. Conclusion

Syntactic error comes because of there syntax is wrong.

Semantic errors are due to type checking.

Dynamic errors are generated during compiling and execution phase.

4 Question / Answer

Ex`plain various types of errors.

Assignment to be given:-

Reference Readings:- Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision: 00

Lecture Plan 26

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-VII

S. No. Topic :-Lexical Phase error, Syntactic phase error.
Time

Allotted:-

1. Introduction

The type of token error generated during lexical phase are covered here and there are

methods to correct them

5

20

20

2

3

2 Division of the Topic

Lexical errors

Minimum distance matching

Syntactic phase error –Time of detuction,panic mode ,error recovery in operator

precedence parsing.

3. Conclusion

We have discussed about different types of errors and how to remove them at prog

level.

4 Question / Answer

What is distance matching ,in which phase this method used.

Assignment to be given:-nil

Reference Readings:- Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

Lecture Plan 27

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-VII

S. No. Topic :-Syntactic phase error.
Time

Allotted:-

1. Introduction

If proper syntax is not given then we encounter syntactic error.

Context free grammar is used in syntax phase are helpful here.

5

10

20

5

10

2 Division of the Topic

error recovery in operator precedence parsing continue

Error recovery in LR parsers.

Recursive descent parser

3. Conclusion

In this way many errors can be removed by various phases of compiler

4 Question / Answer

nil

Assignment to be given:-

nil

Reference Readings:- Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/15

Revision: 00

Lecture Plan 28

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-VII

S. No. Topic:-Code Generation
Time

Allotted:-

1. Introduction

This is the final phase of compiler and it produces either assembly codes or m/c

codes.

5

10

10

10

5

10

2 Division of the Topic

Object codes

Environment of code generator

Problems in code generation.

3. Conclusion

There are diff types of object codes like m/c code, assembly code or the codes

produced from intermediate lang .Different type of environments are required for

different type of codes.,.

4 Question / Answer

Difference bet. Assembly codes and intermediate codes.

Assignment to be given:- nil

Reference Readings:- Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/15

Revision: 00

Lecture Plan 29

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-VII

S. No. Topic :-Machine dependent model
Time

Allotted:-

1. Introduction

Good code generator requires an intimate knowledge of target m/c.Here we discuss

about a m/c –PDP11 and try to find out which types of problems could be faced in

code generation

5

10

10

10

10

5

2 Division of the Topic

Example for different addressing modes require different types of code generator.,

Simple code generator-Introduction

next use information

register description

address description

code generation algo.

3. Conclusion

We have discussed about various problems faced in code generation by using a

simple eg. For code generation .

4 Question / Answer

nil

Assignment to be given:-

nil

Reference Readings:- Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision: 00

Lecture Plan 30

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-VII

S. No. Topic :-Optimization phase
Time

Allotted:-

1. Introduction

Optimization of codes is done to minimize the space and to maximize the speed of

prog. Execution. Some criteria are there like optimization preserved meaning of

source prog>no optimization should map a correct prog> into an incorrect prog and

effort applied for optimization should be reasonable

5

10

10

10

10

2

3

2 Division of the Topic

Principal source of optimization are 1)Inner loops

2)Lang. implementation details inaccessible to users

3)Optimization in sub expressions

4) Algo. optimization

3. Conclusion

Optimization can be done at various points the best one is if we do it at algorithm

level .Loop optimization can be done easily by compilation and optimization phase.

4 Question / Answer

How you will optimize a loop. Also gVIIe an eg. For optimization in expressions.

Assignment to be given:-

nil

Reference Readings:- Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/15

Revision : 00

Lecture Plan 31

 Semester:-VII Class :-ECS Course Code:- :- EC-712-F

Subject:-Compiler Designing Unit:-VII

S. No. Topic:-Register allocation for temp and user defined variable.
Time

Allotted:-

1. Introduction

Here we discuss various strategies for deciding what names in a prog. Should reside

in registers, a problem often referred to as register allocation, and in which registers

each should reside (register assignment.)

5

10

10

10

5

10

2 Division of the Topic

Introduction

Global register allocation

Register assignment for outer loops

3. Conclusion

For register allocations we divide our prog. Into different basic groups after that we

assess each group one by one so that multiple declaration of same variable should not

be there.

4 Question / Answer

What is basic block. How you will create no. of basic blocks. in a prog.

Assignment to be given:-

nil

Reference Readings:- Principles of Compiler Design by Alfred V.Aho & Jeffrey D.Ullman

Doc. No.: DCE/0/03

Revision : 00

