
Course Name:Course Name:
Advanced JavaAdvanced Java

Lecture 23Lecture 23
Topics to be coveredTopics to be covered

 Using Beans to Build an Application
 Naming Patterns for Bean Components
 Events Bean Property Types

Using Beans to Build an Using Beans to Build an
ApplicationApplication
 Builder environments aim to reduce the

amount of drudgery that is involved in
wiring together components into an
application.

 Each builder environment uses its own
strategies to ease the programmer’s life.
The NetBeans is better integrated
development environment because it is a
fairly typical programming environment & it
is freely available also.

 Packaging Beans in JAR Files –
◦ To make any bean usable in a builder

tool, package into a JAR file all class files
that are used by the bean code.
◦ A JAR file for a bean needs a manifest file

that specifies which class files in the
archive are beans & should be included in
the ToolBox.
◦ If your bean contains multiple class files,

just mention in the manifest those class
files that are beans & that you want to
have displayed in the toolBox.

To make the JAR file, follow these steps :
1) Edit the manifest file.
2) Gather all needed class files in a

directory.
3) Run the jar tool as follows:

jar cvfm JarFile ManifestFile ClassFiles
Ex:

jar cvfm ImageViewerBean.jar
ImageViewerbean.mf

com/horstmann/corejava/*.class

You can also add other items such as GIF
files for icons, to the JAR file.

Builder Environments have a mechanism for adding new beans,
typically by loading JAR files.
Here is what you do to import beans into NetBeans.
Compile the ImageViewerBean & FileNameBean classes &
package them into JAR files.
Then start NetBeans & follow these steps :

1) Select Tools --> Palette Manager from the menu.
2) Click the Add from JAR button.

In the file dialog box,move to the ImageViewerBean directory &
select ImageViewerBean.jar
Now a dialog box pops up that lists all the beans that were
founding the JAR file.Select ImageViewerBean.
Finally, you asked into which palette you want to place the
beans. Select Beans.
Have a look at the Beans palette. It now contains an icon
representing the new bean.

Naming Pattern for Bean Naming Pattern for Bean
Properties and EventsProperties and Events
 There is no cosmic beans class that you

extend to build your beans .Visual beans
directly or indirectly extend the Component
class.

 But non visual beans don’t have to extend
any particular superclass.

 There are two alternatives mechanisms:
◦ If the bean writer uses standard naming patterns

for properties & events, then the builder tool can
use the reflection mechanism to understand what
properties & events the bean is supposed to
expose.
◦ The bean writer can supply a bean information

class that tells the builder tool about the
properties & events of the bean.

Naming pattern for propertiesNaming pattern for properties
 The get method is named

get<PropertyName>(),
which takes no parameters and returns an object
of the type identical to the property type.

 For a property of boolean type, the get method
should be named

is<PropertyName>(),
which returns a boolean value.

 The set method should be named
set<PropertyName>(newValue),

which takes a single parameter identical to the
property type and returns void.

 If u have a get method but not an associated
set method, u define a read-only property.

 If u have a set method without an associated
get method then it defines a write only
method.

 An animation might have a property running
with two methods:
◦ public boolean isRunning()
◦ public void setRunning(boolean b)

 The setRunning method would start & stop
the animation.

 The isRunning method would report its
current status.

Naming Pattern for EventsNaming Pattern for Events

 A bean builder environment will infer
that your bean generates events when
you supply methods to add & remove
eventlisteners.

 All event class names must end with
in Event, & the classes must extend
the EventObject class.

 Suppose your bean generates events of type
EventNameEvent. The listener interface must
be called EventNameListener & the methods
to add & remove a listener must be called.

 public void
addEventNameListener(EventNameListener e)

 public void
removeEventNameListener(EventNameListener

e)

PropertiesProperties

 Discrete, named attributes that
determine the appearance and
behavior and state of a component

 Accessible programmatically through
accessor methods

 Accessible visually through property
sheets

 Exposed as object fields in a scripting
environment

Bean Property TypesBean Property Types
 A bean has a lot of different kinds of properties that

it should expose in builder tool for a user to set at
design time or get at run time.

 It also triggers both standard & custom events.
 The Java bean specification allows four types

of Properties:
◦ Simple Properties
◦ Indexed Properties
◦ Bound Properties
◦ Constrained Properties

Simple PropertiesSimple Properties
 Represent a single value
 The accessor methods should follow

standard naming conventions

public <PropertyType> get<PropertyName>();
public void set<PropertyName>(<PropertyType> value);
Example:
public String getHostName();
public void setHostName(String hostName);

Boolean PropertiesBoolean Properties
 They are simple properties
 The getter methods follow an optional

design pattern

public boolean is<PropertyName>();
Example:
public boolean isConnected();

Indexed PropertiesIndexed Properties
 Represent an array of values

public <PropertyElement> get<PropertyName>(int index);
public void set<PropertyName>(int index,<PropertyElement> value);
public <PropertyElement>[] get<PropertyName>();
public void set<PropertyName>(<PropertyElement>[] values);

Example:
public Color setPalette(int index);
public void setPalette(int index, Color value);
public Color[] getPalette();
public void setPalette(Color[] values);

Bound PropertiesBound Properties
 Registered listeners object are notified

when the value of the property
changes

 Listeners must implement the
java.beans.PropertyChangeListener
interface

propertyChange(PropertyChangeEvent event);

Constrained PropertiesConstrained Properties
 Allow registered listeners to validate a

proposed change
 Listeners must implement the

java.beans.VetoablecChangeListener
interface

vetoableChange(PropertyChangeEvent event)
throws PropertyVetoException;

Constrained Properties Constrained Properties --
ExampleExample

public void setHostName(String newHostName)
throws java.beans.PropertyVetoException

{
String oldHostName = this.hostName;

// First tell the vetoers about the change. If anyone objects, we
// don't catch the exception but just let if pass on to our caller.
vetoableChangeSupport.fireVetoableChange("hostName",

oldHostName, newHostName);
// change accepted; update state
this.hostName = newHostName;

// notify property change listeners
propertyChangeSupport.firePropertyChange("hostName",

oldHostName, newHostName);
}

