
Course Name:Course Name:
Advanced JavaAdvanced Java

Lecture 16Lecture 16
Topics to be coveredTopics to be covered

 The Roles of Client and Server
 Remote Method Invocations
 Setup for Remote Method Invocation
 Parameter Passing in Remote Methods
 Server Object Activation

What is RMI?What is RMI?
 Java Remote Method Invocation is a

mechanism that allows calls between
objects in different JVMs

 Basic concepts:
◦ Remote Interface
 defines the methods that a client can invoke on a

server
◦ Remote Object
 an object whose methods can be invoked from

another JVM
◦ Remote Method Invocation
 invoking a method of a remote interface on a

remote object, i.e., inter-JVM call

Remote InterfaceRemote Interface
 Extends java.rmi.Remote
◦ java.rmi.Remote is an empty interface
◦ Flags methods that can be called remotely

 Client is coded to remote interface
◦ Invoking a remote method uses normal Java

syntax
 All methods of a remote interface must

throw java.rmi.RemoteException
◦ Thrown when a remote invocation fails, e.g.,

a communications failure
 Used in generating stubs and skeletons

Client Server
call getCount

inc. count

display result

Remote
Object

Remote
Interface

Remote ObjectRemote Object
 Implements a remote interface
◦ Can add additional methods

 Typically extends (a subclass of)
java.rmi.server.RemoteObject

 Client uses a stub to refer to remote
object
◦ Never access remote object directly

 Java RMI is a mechanism that allows a Java
program running on one computer to apply a
method to an object living on a different
computer.
 RMI is an implementation of the of the

Distributed Object programming model—similar
to CORBA, but simpler and specialized to the
Java language.

 The syntax of the remote method invocation
looks like an ordinary Java method invocation.
 The remote method call can be passed

arguments computed in the context of the local
machine. It can return arbitrary values computed
in the context of the remote machine. The RMI
runtime system transparently communicates all
data required.

 In some ways Java RMI is more general than
CORBA—it can exploit Java features like object
serialization and dynamic class loading to
provide more complete object-oriented
semantics.

Distributed Object PictureDistributed Object Picture

 Code running in the local machine holds a
remote reference to an object obj on a remote
machine:

Local Machine

Remote Machine

res = obj.meth(arg) ; ResType meth(ArgType arg) {
. . . Any code …
return new ResImpl(. . .) ;

}

obj

The Remote InterfaceThe Remote Interface
 In RMI, a common remote interface is the

minimum amount of information that must be
shared in advance between “client” and “server”
machines. It defines a high-level “protocol”
through which the machines will communicate.

 A remote interface is a normal Java interface,
which must extent the marker interface
java.rmi.Remote.
 Corollaries: because the visible parts of a remote

object are defined through a Java interface,
constructors, static methods and non-constant fields
are not remotely accessible (because Java interfaces
can’t contain such things).

 All methods in a remote interface must be
declared to throw the java.rmi.RemoteException
exception.

A Simple ExampleA Simple Example
 A file MessageWriter.java contains

the interface definition:
import java.rmi.* ;

public interface MessageWriter
extends Remote {

void writeMessage(String s)
throws RemoteException ;
}

 This interface defines a single remote
method, writeMessage().

java.rmi.Remotejava.rmi.Remote

 The interface java.rmi.Remote is a
marker interface.

 It declares no methods or fields; however,
extending it tells the RMI system to treat
the interface concerned as a remote
interface.
◦ In particular we will see that the rmic compiler

generates extra code for classes that
implement remote interfaces. This code
allows their methods to be called remotely.

java.rmi.RemoteExceptionjava.rmi.RemoteException
 Requiring all remote methods be declared to throw

RemoteException was a philosophical choice by
the designers of RMI.

 RMI makes remote invocations look syntactically
like local invocation. In practice, though, it cannot
defend from problems unique to distributed
computing—unexpected failure of the network or
remote machine.

 Forcing the programmer to handle remote
exceptions helps to encourage thinking about how
these partial failures should be dealt with.

 See the influential essay: “A Note on Distributed
Computing” by Waldo et al, republished in The Jini
Specification:

http://java.sun.com/docs/books/jini

http://java.sun.com/docs/books/jini

The Remote ObjectThe Remote Object
 A remote object is an instance of a class that

implements a remote interface.
 Most often this class also extends the library class

java.rmi.server.UnicastRemoteObject. This
class includes a constructor that exports the object
to the RMI system when it is created, thus making
the object visible to the outside world.

 Usually you will not have to deal with this class
explicitly—your remote object classes just have to
extend it.

 One fairly common convention is to name the
class of the remote object after the name of the
remote interface it implements, but append “Impl”
to the end.

A Remote Object Implementation A Remote Object Implementation
ClassClass
 The file MessageWriterImpl.java contains the class

declaration:

import java.rmi.* ;
import java.rmi.server.* ;
public class MessageWriterImpl extends
UnicastRemoteObject

implements
MessageWriter {

public MessageWriterImpl() throws RemoteException {
}
public void writeMessage(String s) throws

RemoteException {
System.out.println(s) ;

}
}

Compiling the Remote Object Compiling the Remote Object
ClassClass

 To compile classes that implement
Remote, you must use the rmic compiler.
The reasons will be discussed later. For
example:

sirah$ rmic MessageWriterImpl

RMI Parameter PassingRMI Parameter Passing
 There are two types of parameters to

consider
◦ Remote objects, i.e., implement

java.rmi.Remote
◦ Non-remote objects

 This applies both to inputs and return
results

Remote Objects as Remote Objects as
ParametersParameters
 The target receives a reference to the client

stub implementing the remote interface
 Enables access to unnamed remote objects
◦ Client creates a remote object and passes it as a

parameter on a remote method
◦ Server returns a remote object as the result of a

remote method
 Enables peers and not just client-server
◦ Client invokes a remote method, passing a

remote object that it implements as a parameter
◦ When server invokes a method on this parameter

it is using a client stub, this results in a callback
to original client

Passing NonPassing Non--Remote Objects as Remote Objects as
ParametersParameters
 Objects are passed by value
◦ A copy of object is sent to the server

 Java Object Serialization used to copy
parameters:
◦ Non-remote-object parameters of a remote

interface must be Serializable
 Use of Serialization gives different

semantics than normal Java parameter
passing:
◦ given remote method:
 Object identity(Object o) { return o; }
◦ then:
 o != remote.identity(o)

RMI Stubs and SkeletonsRMI Stubs and Skeletons
 Stubs and skeletons are mechanically

generated, e.g., by rmic (RMI
Compiler)
◦ input is a class file containing a remote

object, e.g., CountImpl.class
◦ output is class files for stub and skeleton

for the remote object
 CountImpl_Stub and CountImpl_Skel
 optionally can keep Java source files
◦ stub class extends RemoteStub
 stub thus has remote semantics for equals,

toString and hashCode

RMI's StrengthsRMI's Strengths
 Relatively easy to develop a

distributed application
◦ But harder than a non-distributed

application
 No need to learn a separate language

or object model
◦ But need to learn subtle differences

 A pure Java solution
◦ "Write Once, Run Anywhere"

RMI's WeaknessesRMI's Weaknesses
 Loss of object identity
◦ If an object is passed by value, a new copy of the

object is created
 Performance
◦ If one is not very careful, the use of serialization

can result in sending very large messages
 Potential for Deadlock if Callbacks are used
◦ System A makes a remote call to system B
◦ B makes a callback to A
◦ The thread that will process the callback in A is

not the thread that made the original call to B
◦ If A was holding a lock when it made the initial

call, deadlock may result.

