
Course Name:Course Name:
Advanced JavaAdvanced Java

Lecture 14Lecture 14
Topics to be coveredTopics to be covered

 JDBC Installation
 Transactions
 Metadata

Steps in JDBC Connectivity:Steps in JDBC Connectivity:--

 Here are the JDBC Steps to be
followed while writing JDBC program:

 Loading Driver
 Establishing Connection
 Executing Statements
 Getting Results
 Closing Database Connection

1. Loading Driver-
Connection con=null;

Class.forName("sun.jdbc.odbc.JdbcOdbcDri
ver");
2. Establishing Connection –

con=DriverManager.getConnection("jdb
c:odbc:table1"," "," ");

2. Executing Statements –
Statement statement=con.createStatement();
ResultSet rs=statement.executeQuery("select

* from tab1");
3. Getting Results –

while(rs.next())
{
out.println("\n"+rs.getString("id")+"\t");
out.println("\n"+rs.getString("name")+"\t");
out.println("\n"+rs.getString("roll")+"\t");
out.println("\n"+rs.getString("price")+"/t");
}

4. Closing Database Connection -
rs.close();

JDBC TransactionsJDBC Transactions
 A Transaction’s ACID properties are:
◦ Atomic: The entire set of actions must succeed or

the set fails
◦ Consistent: consistent state transfer from one state

to the next
◦ Isolated: A transaction is encapsulated and

unmodifiable until the execution of the transaction set
is complete

◦ Durable: Changes committed through a transaction
survive and tolerate system failures.

 Classic Example 1: Bank Transfer from one account to
another
◦ Step 1: withdrawal from Account A
◦ Step 2: deposit into Account B

Using TransactionsUsing Transactions
 Step 1: turn off autocommit:
◦ conn.setAutoCommit(false);

 Step 2: create and execute statements like normal
 Step 3: fish or cut bait: commit or rollback
◦ if all succeeded:
 conn.commit();

◦ else, if one or more failed:
 conn.rollback();

 Step 4 (Optional): turn autocommit back on:
◦ conn.setAutoCommit(true);

Rolling Back TransactionsRolling Back Transactions
 When you get a SQLException, you are not told what part of

the transaction succeeded and what part failed (this should
be irrelevant)

 Best Practice:
◦ try to rollback() (may throw new SQLException)
◦ start over

 Example:
◦ catch(SQLException e) {
 try {

 conn.rollback();
 } catch (SQLException e) { checkPlease(); }

◦ }

Transactions and Performance Transactions and Performance
ImplicationsImplications

 Favor Transactions:
◦ Disabling auto-commit means fewer commits over the wire

(from driver to DBMS) which may cut down on IO overhead at
the dataserver

 Favor Autocommit:
◦ enabling autocommit may improve performance when

multiple users are vying for database resources because
locks are held for shorter periods of time
 locks are only held per transaction. In autocommit mode, each

statement is essentially a transaction
 locks may be either page-level or row-level locks, the latter being

more efficient (Oracle)

Transaction Transaction IIsolation Modessolation Modes
 TRANSACTION_NONE
◦ Transactions are disabled or unsupported

 TRANSACTION_READ_UNCOMMITTED
◦ Open policy that allows others to read uncommitted segments of a

transaction, high potential for dirty reads
 TRANSACTION_READ_COMMITTED
◦ Closed policy that disallows others’ reading uncommitted segments.

They must block until a commit is received, dirty reads are
forbidden.

 TRANSACTION_REPEATABLE_READ
◦ subsequent read transactions always get same set regardless of

alteration until they call commit(), after which they get the changed
data

 TRANSACTION_SERIALIZABLE
◦ as above but also adds row insertion protection as well. If a

transaction reads, and another transaction adds a row, and the first
transaction reads again, it will get the original set without seeing the
new row.

 Conn.setTransactionIsolation(TRANSACTION_READ_COMMITTED)

Stored ProceduresStored Procedures
 A Stored Procedure is written in a metalanguage defined by

the DBMS vendor
 Used to batch or group multiple SQL statements that are

stored in executable form at the database
 Written in some internal programming language of the DBMS:
◦ Oracle’s PL/SQL
◦ Sybase’s Transact-SQL

 THESE LANGUAGES ARE NON-PORTABLE from one
DBMS to another (with the exception of the SQLJ standard,
which allows you to write SQL in standard Java and have that
understood by any DBMS that supports the SQLJ standard).

IncompatibilitiesIncompatibilities
 Oracle Example:
◦ CREATE PROCEDURE sp_select_min_bal

@balance IN FLOAT,
AS
SELECT account_id
WHERE balance > @balance

 Sybase Example:
◦ create proc sp_select_min_bal

(@balance real)
as
select account_id
where balance > @balance
return

Why Use Stored Procedures?Why Use Stored Procedures?
 Faster Execution of SQL (compiled and in-memory

stored query plan)
 Reduced Network Traffic
 Modular Programming
 Automation of complex or sensitive transactions
 Syntax checking at time of creation of SP
 Syntax supports if, else, while loops, goto, local

variables, etc., all of which dynamic SQL doesn’t
have

Using Stored ProceduresUsing Stored Procedures
 Create a CallableStatement (using prepareCall which is

similar to prepareStatement)
◦ CallableStatement stmt =
 conn.prepareCall(“{call sp_setBalance(?,?)}”
 stmt.registerOutParameter(2, Types.FLOAT);
 stmt.setInt(1, custID);
 stmt.setFloat(2, 213432.625);
 stmt.execute();
 Float newBalance = stmt.getFloat(2);

◦ Always register OUT or INOUT parameters in stored
procedures using registerOutParameter()

Using the JDBC MetaData Using the JDBC MetaData
InterfaceInterface

 ResultSet: ResultSetMetaData getMetaData()
 ResultSetMetaData provides information about the types and

properties of the DDL properties of a ResultSet object
 ResultSetMetaData provides various methods for finding out

information about the structure of a ResultSet:
◦ getColumnClassName(int col): gets fully-qualified Java class name

to which a column value will be mapped; eg. Java.lang.Integer, etc.
◦ getColumnCount(): gets the number of columns in the ResultSet
◦ getColumnDisplaySize(int col): gets the normal maximum width in

characters for column
◦ getColumnName(int col): gets the name of column
◦ int getColumnType(int col): gets the JDBC type (java.sql.Types) for

the value stored in col; eg. Value 12 = JDBC VARCHAR, etc.
◦ getPrecision(int col): for numbers, gets the mantissa length, for

others, gets the number of bytes for column

JDBC JDBC –– Metadata from RSMetadata from RS

public static void printRS(ResultSet rs) throws SQLException
{

ResultSetMetaData md = rs.getMetaData();
// get number of columns
int nCols = md.getColumnCount();
// print column names
for(int i=1; i < nCols; ++i)

System.out.print(md.getColumnName(i)+",");
/ / output resultset

while (rs.next())
{ for(int i=1; i < nCols; ++i)

System.out.print(rs.getString(i)+",");
System.out.println(rs.getString(nCols));

}
}

