
Course Name:Course Name:
Advanced JavaAdvanced Java

Lecture 13Lecture 13
Topics to be coveredTopics to be covered

 The Design of JDBC
 The Structured Query Language
 Basic JDBC Programming Concepts
 Query Execution
 Scrollable and Updatable Result Sets

Introducing JDBCIntroducing JDBC
 According to Sun, JDBC is not an

acronym, but is commonly
misinterpreted to mean Java
DataBase Connectivity

 Supports ANSI SQL 92 Entry Level

The Standard Query Language The Standard Query Language
(SQL)(SQL)

 Composed of two categories:
◦ Data Manipulation Language (DML)
 used to manipulate the data
 select
 delete
 update

◦ Data Definition Language (DDL)
 create database
 create table
 drop database

Data Manipulation LanguageData Manipulation Language

 SELECT - query the database
◦ select * from customer where id > 1001

 INSERT - adds new rows to a table.
◦ Insert into customer values (1009, ‘John Doe’)

 DELTE - removes a specified row
◦ delete

 UPDATE - modifies an existing row
◦ update customers set amount = 10 where id >

1003

Data Definition LanguageData Definition Language
 CREATE DATABASE - allows you to

create a database
 CREATE TABLE - allows you to create

a table definition in a database
 DROP TABLE - removes a table from

a database
 ALTER TABLE - modifies the definition

of a table in a database

JDBC FrameworkJDBC Framework
 The JDBC driver manager
 The JDBC driver

General ArchitectureGeneral Architecture

 What design pattern is
implied in this
architecture?

 What does it buy for us?
 Why is this architecture

also multi-tiered?

The JDBC Driver ManagerThe JDBC Driver Manager
 Management layer of JDBC, interfaces between the

client and the driver.
 Keeps a hash list of available drivers
 Manages driver login time limits and printing of log

and tracing messages
 Secure because manager will only allow drivers that

come from local file system or the same initial class
loader requesting a connection

 Most popular function:
◦ Connection getConnection(url, id, passwd);

JDBC Driver TypesJDBC Driver Types
 Type 1 (JDBC-ODBC Bridge

Technology)
 Type 2 (JNI drivers for C/C++

connection libraries)
 Type 3 (Socket-level Middleware

Translator)
 Type 4 (Pure Java-DBMS driver)

Type 1 DriversType 1 Drivers
JDBCJDBC--ODBC BridgesODBC Bridges

 JDBC driver translates call into ODBC
and redirects ODBC call to an ODBC
driver on the DBMS

 ODBC binary code must exist on
every client

 Translation layer compromises
execution speed to small degree

Type 2 DriversType 2 Drivers
NativeNative--API + Java DriverAPI + Java Driver

 Java driver makes JNI calls on the client API
(usually written in C or C++)
◦ eg: Sybase dblib or ctlib
◦ eg: Oracle Call Interface libs (OCI)

 Requires client-side code to be installed
 Often the fastest solution available
 Native drivers are usually delivered by DBMS

vendor
 bug in driver can crash JVMs
 Example: JDBC=>Sybase dblib or ctlib

Type 3 DriversType 3 Drivers
JDBCJDBC--Middleware Pure Java DriverMiddleware Pure Java Driver

 JDBC driver translates JDBC calls into a DBMS-
independent protocol

 Then, communicates over a socket with a
middleware server that translates Java code into
native API DBMS calls

 No client code need be installed
 Single driver provides access to multiple DBMSs,

eg. WebLogic Tengah drivers
 Type 3 drivers auto-download for applets.

Type 4 DriversType 4 Drivers
Pure Java DriversPure Java Drivers

 Java drivers talk directory to the
DBMS using Java sockets

 No Middleware layer needed, access
is direct.

 Simplest solution available.
 No client code need be installed.
 Example: JConnect for Sybase
 Type 4 drivers auto-download for

applets

Result Sets and CursorsResult Sets and Cursors
 Result Sets are returned from queries.
 Number of rows in a RS can be zero,

one, or more
 Cursors are iterators that iterate

through a result set
 JDBC 2.0 allows for backward as well

as forward cursors, including the
ability to go to a specific row or a
relative row

A JDBC PrimerA JDBC Primer
 First, load the JDBC Driver:
◦ call new to load the driver’s implementation of Driver class

(redundant--Class.forName does this for you automatically) and call
DriverManager.RegisterDriver()

◦ add driver to the jdbc.drivers property - DriverManager will load
these automatically
 eg: ~/.hotjava/properties:
 jdbc.drivers=com.oracle.jdbc.OracleDriver:etc;

 or programatically:
 String old = sysProps.getProperty(“jdbc.drivers”);
 drivers.append(“:” + oldDrivers);
 sysProps.put(“jdbc.drivers”, drivers.toString());

◦ call Class.forName and pass it the classname for the driver
implementation

Create a Connection to the Create a Connection to the
database vi the driverdatabase vi the driver

 Call the getConnection method on the
DriverManager object.

 Connection conn =
DriverManager.getConnection(url, login,
password)

 url: jdbc:subprotocol:host:port[/database]
◦ registered subprotocol: sybase, odbc,

msql, etc.
◦ eg: jdbc:sybase:Tds:limousin:4100/myDB

 Only requirement: The relevant Drivers must be
able to recognize their own URL

SQL StatementsSQL Statements
 Create some form of Statement
◦ Statement
 Represents a basic SQL statement
 Statement stmt = conn.createStatement();
◦ PreparedStatement
 A precompiled SQL statement, which can offer

improved performance, especially for
large/complex SQL statements

◦ Callable Statement
 Allows JDBC programs access to stored

procedures

Execute the StatementExecute the Statement
 executeQuery(): execute a query and get a ResultSet back
 executeUpdate(): execute an update and get back an int

specifying number of rows acted on
◦ UPDATE
◦ DELETE

 execute(): execute unknown SQL and returns true if a resultSet
is available:
◦ Statement genericStmt = conn.createStatement();
◦ if(genericStmt.execute(SQLString)) {
 ResultSet rs = genericStmt.getResultSet(); process(); }

◦ else {
 int updated = genericStmt.getUpdateCount();

processCount();
◦ }
 etc.

Result SetsResult Sets
 ResultSet rs = stmt.executeQuery(“select id, price from

inventory”);
◦ rs.next() - go to next row in ResultSet
 call once to access first row: while(rs.next()) {}

◦ getXXX(columnName/indexVal)
 getFloat()
 getInt()
 getDouble()
 getString() (highly versatile, inclusive of others; automatic

conversion to String for most types)
 getObject() (returns a generic Java Object)

◦ rs.wasNull() - returns true if last get was Null

JDBC 2 JDBC 2 –– Scrollable Result Scrollable Result
SetSet
…
Statement stmt =
con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);

String query = “select students from class where type=‘not
sleeping’ “;

ResultSet rs = stmt.executeQuery(query);

rs.previous(); / / go back in the RS (not possible in JDBC 1…)
rs.relative(-5); / / go 5 records back
rs.relative(7); / / go 7 records forward
rs.absolute(100); / / go to 100th record
…

JDBC 2 JDBC 2 –– Updateable ResultSetUpdateable ResultSet
…
Statement stmt =
con.createStatement(ResultSet.TYPE_FORWARD_ONLY,

ResultSet.CONCUR_UPDATABLE);
String query = " select students, grade from class

where type=‘really listening this presentation’ “;
ResultSet rs = stmt.executeQuery(query);
…
while (rs.next())
{

int grade = rs.getInt(“grade”);
rs.updateInt(“grade”, grade+10);
rs.updateRow();

}

Prepared StatementsPrepared Statements
 Use for complex queries or repeated queries
 Features:
◦ precompiled at database (statement usually sent to database

immediately on creation for compilation)
◦ supply with new variables each time you call it (repeatedly

eg.)
 eg:
◦ PreparedStatement ps = conn.prepareStatement(“update

table set sales = ? Where custName = ?”);
 Set with values (use setXXX() methods on PreparedStatement:
◦ ps.setInt(1, 400000);
◦ ps.setString(2, “United Airlines”);

 Then execute:
◦ int count = ps.executeUpdate();

