
Course Name:Course Name:
Advanced JavaAdvanced Java

Lecture 8Lecture 8
Topics to be coveredTopics to be covered

 Collections

IntroductionIntroduction
 A collection, sometimes called a container, is

simply an object that groups multiple elements
into a single unit.

 Collections are used to store, retrieve,
manipulate, and communicate aggregate data.

 Typically, they represent data items that form a
natural group, such as a poker hand (a
collection of cards), a mail folder (a collection
of letters), or a telephone directory (a mapping
of names to phone numbers).

 Collections are contained in the java.util
package.

 These are designed to provide high-
performance to the processes.

Collection FrameworkCollection Framework
 Java language defines a collections framework

as “a unified architecture for representing and
manipulating collections, allowing them to be
manipulated independent of the details of their
representation.”

All collections frameworks contain the
following:

1. Interfaces
2. Implementations
3. Algorithms

 Interfaces: These are abstract data types that represent
collections. Interfaces allow collections to be
manipulated independently of the details of their
representation. In object-oriented languages, interfaces
generally form a hierarchy.

 Implementations: These are the concrete
implementations of the collection interfaces. In essence,
they are reusable data structures.

 Algorithms: These are the methods that perform useful
computations, such as searching and sorting, on objects
that implement collection interfaces. The algorithms are
said to be polymorphic: that is, the same method can be
used on many different implementations of the
appropriate collection interface. In essence, algorithms
are reusable functionality.

Java arrays have limitations.
 They cannot dynamically shrink and grow.
 Implementing efficient, complex data

structures from scratch would be difficult.

The Java Collections Framework is a set of
classes and interfaces implementing complex
collection data structures.
 A collection is an object that represents a

group of objects.

The Java Collections Framework provides
many benefits:
 Reduces programming effort (already there)
 Increases performance (tested and

optimized)
 Part of the core API (available, easy to

learn)
 Promotes software reuse (standard

interface)
 Easy to design APIs based on generic

collections

Overview of Collection
 A collection is a group of data

manipulate as a single object.
Corresponds to a bag.

 Like C++'s Standard Template Library
(STL)

 Can grow as necessary.
 Contain only Objects (reference

types).

Collection Interfaces
 Collections are primarily defined through a set of

interfaces.
Supported by a set of classes that implement the
interfaces

 Interfaces are used of flexibility reasons
. It is easy to change or replace the underlying

collection class with another (more efficient)
class that implements the same interface.

Collection Interfaces and Collection Interfaces and
ClassesClasses

The Set Interface
 Corresponds to the mathematical definition of a set (no

duplicates are allowed).
 Compared to the Collection interface

1. Interface is identical.
2.Every constructor must create a collection without

duplicates.
3.The operation add cannot add an element already in the

set.
4. The method call set1.equals(set2) works at follows

set1 C set2, and set2 C set1

Set Idioms
 set1 U set2

set1.addAll(set2)
 set1 ∩ set2

set1.retainAll(set2)
 set1 - set2

set1.removeAll(set2)

HashSet and TreeSet Classes

 HashSet and TreeSet implement the
interface Set.

 HashSet
1.Implemented using a hash table.
2.No ordering of elements.
3.add, remove, and contains methods

 TreeSet
1. Implemented using a tree structure.
2.Guarantees ordering of elements.
3. add, remove, and contains methods

HashSet, Example
import java.util.*;
public class FindDups {

public static void main(String args[]){
Set s = new HashSet();
for (int i = 0; i < args.length; i++)
{

if (!s.add(args[i]))
System.out.println("Duplicate detected: "

+args[i]);
}
System.out.println(s.size() +" distinct words detected: "

+s);
}

}

The List Interface
 The List interface corresponds to an order

group of elements.
Duplicates are allowed.

 Extensions compared to the Collection
interface

1. Access to elements
add (int, Object), get(int), remove(int), set(int, Object)

 Search for elements
indexOf(Object), lastIndexOf(Object)

Further requirements compared to the
Collection Interface

 add(Object)adds at the end of the list.
 remove(Object)removes at the start of the list.
 list1.equals(list2)the ordering of the elements is

taken into consideration.
 Extra requirements to the method hashCode.

list1.equals(list2) implies that
list1.hashCode()==list2.hashCode()

ArrayList and LinkedList Classes
 The classes ArrayList and LinkedList implement

the
List interface.

 ArrayList is an array based implementation where
elements can be accessed directly via the get and
set methods.

1. Default choice for simple sequence.
 LinkedList is based on a double linked list

1.Gives better performance on add and remove
compared to ArrayList.

2.Gives poorer performance on get and set
methods compared to ArrayList.

ArrayList, Example

import java.util.*;
public class Shuffle {

public static void main(String args[])
{

List l = new ArrayList();
for (int i = 0; i < args.length; i++)

l.add(args[i]);
Collections.shuffle(l, new Random());
System.out.println(l);

}
}

LinkedList, Example
import java.util.*;
public class MyStack {

private LinkedList list = new LinkedList();
public void push(Object o)
{

list.addFirst(o);
}
public Object top(){

return list.getFirst();
}
public Object pop(){

return list.removeFirst();
}
public static void main(String args[]) {

Car myCar;
MyStack s = new MyStack();
s.push (new Car());
myCar = (Car)s.pop();

}
}

HashMap and TreeMap Classes
 The HashMap and HashTree classes

implement the Map interface.
 HashMap

1.The implementation is based on a hash
table.

2.No ordering on (key, value) pairs.
 TreeMap

1.The implementation is based on red-black
tree structure.

2.(key, value) pairs are ordered on the key.

HashMap, Example

import java.util.*;
public class Freq {

private static final Integer ONE = new Integer(1);
public static void main(String args[]) {

Map m = new HashMap();
// Initialize frequency table from command line
for (int i=0; i < args.length; i++) {

Integer freq = (Integer) m.get(args[i]);
m.put(args[i], (freq==null ? ONE :new

Integer(freq.intValue() +
1)));

}
System.out.println(m.size()+" distinct words detected:");
System.out.println(m);

}
}

Collection Advantages and
Disadvantages

Advantages
 Can hold different types of objects.
 Resizable

Disadvantages
 Must cast to correct type
 Cannot do compile-time type checking.

