
Course Name:Course Name:
Advanced JavaAdvanced Java

Lecture 8Lecture 8
Topics to be coveredTopics to be covered

 Collections

IntroductionIntroduction
 A collection, sometimes called a container, is

simply an object that groups multiple elements
into a single unit.

 Collections are used to store, retrieve,
manipulate, and communicate aggregate data.

 Typically, they represent data items that form a
natural group, such as a poker hand (a
collection of cards), a mail folder (a collection
of letters), or a telephone directory (a mapping
of names to phone numbers).

 Collections are contained in the java.util
package.

 These are designed to provide high-
performance to the processes.

Collection FrameworkCollection Framework
 Java language defines a collections framework

as “a unified architecture for representing and
manipulating collections, allowing them to be
manipulated independent of the details of their
representation.”

All collections frameworks contain the
following:

1. Interfaces
2. Implementations
3. Algorithms

 Interfaces: These are abstract data types that represent
collections. Interfaces allow collections to be
manipulated independently of the details of their
representation. In object-oriented languages, interfaces
generally form a hierarchy.

 Implementations: These are the concrete
implementations of the collection interfaces. In essence,
they are reusable data structures.

 Algorithms: These are the methods that perform useful
computations, such as searching and sorting, on objects
that implement collection interfaces. The algorithms are
said to be polymorphic: that is, the same method can be
used on many different implementations of the
appropriate collection interface. In essence, algorithms
are reusable functionality.

Java arrays have limitations.
 They cannot dynamically shrink and grow.
 Implementing efficient, complex data

structures from scratch would be difficult.

The Java Collections Framework is a set of
classes and interfaces implementing complex
collection data structures.
 A collection is an object that represents a

group of objects.

The Java Collections Framework provides
many benefits:
 Reduces programming effort (already there)
 Increases performance (tested and

optimized)
 Part of the core API (available, easy to

learn)
 Promotes software reuse (standard

interface)
 Easy to design APIs based on generic

collections

Overview of Collection
 A collection is a group of data

manipulate as a single object.
Corresponds to a bag.

 Like C++'s Standard Template Library
(STL)

 Can grow as necessary.
 Contain only Objects (reference

types).

Collection Interfaces
 Collections are primarily defined through a set of

interfaces.
Supported by a set of classes that implement the
interfaces

 Interfaces are used of flexibility reasons
. It is easy to change or replace the underlying

collection class with another (more efficient)
class that implements the same interface.

Collection Interfaces and Collection Interfaces and
ClassesClasses

The Set Interface
 Corresponds to the mathematical definition of a set (no

duplicates are allowed).
 Compared to the Collection interface

1. Interface is identical.
2.Every constructor must create a collection without

duplicates.
3.The operation add cannot add an element already in the

set.
4. The method call set1.equals(set2) works at follows

set1 C set2, and set2 C set1

Set Idioms
 set1 U set2

set1.addAll(set2)
 set1 ∩ set2

set1.retainAll(set2)
 set1 - set2

set1.removeAll(set2)

HashSet and TreeSet Classes

 HashSet and TreeSet implement the
interface Set.

 HashSet
1.Implemented using a hash table.
2.No ordering of elements.
3.add, remove, and contains methods

 TreeSet
1. Implemented using a tree structure.
2.Guarantees ordering of elements.
3. add, remove, and contains methods

HashSet, Example
import java.util.*;
public class FindDups {

public static void main(String args[]){
Set s = new HashSet();
for (int i = 0; i < args.length; i++)
{

if (!s.add(args[i]))
System.out.println("Duplicate detected: "

+args[i]);
}
System.out.println(s.size() +" distinct words detected: "

+s);
}

}

The List Interface
 The List interface corresponds to an order

group of elements.
Duplicates are allowed.

 Extensions compared to the Collection
interface

1. Access to elements
add (int, Object), get(int), remove(int), set(int, Object)

 Search for elements
indexOf(Object), lastIndexOf(Object)

Further requirements compared to the
Collection Interface

 add(Object)adds at the end of the list.
 remove(Object)removes at the start of the list.
 list1.equals(list2)the ordering of the elements is

taken into consideration.
 Extra requirements to the method hashCode.

list1.equals(list2) implies that
list1.hashCode()==list2.hashCode()

ArrayList and LinkedList Classes
 The classes ArrayList and LinkedList implement

the
List interface.

 ArrayList is an array based implementation where
elements can be accessed directly via the get and
set methods.

1. Default choice for simple sequence.
 LinkedList is based on a double linked list

1.Gives better performance on add and remove
compared to ArrayList.

2.Gives poorer performance on get and set
methods compared to ArrayList.

ArrayList, Example

import java.util.*;
public class Shuffle {

public static void main(String args[])
{

List l = new ArrayList();
for (int i = 0; i < args.length; i++)

l.add(args[i]);
Collections.shuffle(l, new Random());
System.out.println(l);

}
}

LinkedList, Example
import java.util.*;
public class MyStack {

private LinkedList list = new LinkedList();
public void push(Object o)
{

list.addFirst(o);
}
public Object top(){

return list.getFirst();
}
public Object pop(){

return list.removeFirst();
}
public static void main(String args[]) {

Car myCar;
MyStack s = new MyStack();
s.push (new Car());
myCar = (Car)s.pop();

}
}

HashMap and TreeMap Classes
 The HashMap and HashTree classes

implement the Map interface.
 HashMap

1.The implementation is based on a hash
table.

2.No ordering on (key, value) pairs.
 TreeMap

1.The implementation is based on red-black
tree structure.

2.(key, value) pairs are ordered on the key.

HashMap, Example

import java.util.*;
public class Freq {

private static final Integer ONE = new Integer(1);
public static void main(String args[]) {

Map m = new HashMap();
// Initialize frequency table from command line
for (int i=0; i < args.length; i++) {

Integer freq = (Integer) m.get(args[i]);
m.put(args[i], (freq==null ? ONE :new

Integer(freq.intValue() +
1)));

}
System.out.println(m.size()+" distinct words detected:");
System.out.println(m);

}
}

Collection Advantages and
Disadvantages

Advantages
 Can hold different types of objects.
 Resizable

Disadvantages
 Must cast to correct type
 Cannot do compile-time type checking.

