
Course Name:Course Name:
Advanced JavaAdvanced Java



Lecture 5Lecture 5
Topics to be coveredTopics to be covered

 Exception Handling



Exception HandlingException Handling--
IntroductionIntroduction
 An exception is an abnormal condition that 

arises in a code sequence at run time
 A Java exception is an object that describes 

an exceptional condition that has occurred in 
a piece of code

 When an exceptional condition arises, an 
object representing that exception is created 
and thrown in the method that caused the 
error

 An exception can be caught to handle it or 
pass it on

 Exceptions can be generated by the Java run-
time system, or they can be manually 
generated by your code



Exception HandlingException Handling--
FundamentalsFundamentals

 Java exception handling is managed by via five 
keywords: try, catch, throw, throws, and finally

 Program statements to monitor are contained 
within a try block

 If an exception occurs within the try block, it is 
thrown

 Code within catch block catch the exception and 
handle it

 System generated exceptions are automatically 
thrown by the Java run-time system

 To manually throw an exception, use the 
keyword throw

 Any exception that is thrown out of a method 
must be specified as such by a throws clause



ExceptionException--Handling Handling 
FundamentalsFundamentals

 Any code that absolutely must be executed 
before a method returns is put in a finally block

 General form of an exception-handling block
try{

// block of code to monitor for errors
}
catch (ExceptionType1 exOb){

// exception handler for ExceptionType1
}
catch (ExceptionType2 exOb){

// exception handler for ExceptionType2
}
finally{

// block of code to be executed before try block ends
}



Exception TypesException Types
 All exception types are subclasses of the 

built-in class Throwable
 Throwable has two subclasses, they are
◦ Exception (to handle exceptional 

conditions that user programs should 
catch)
 An important subclass of Exception is 

RuntimeException, that includes division by zero and 
invalid array indexing

◦ Error (to handle exceptional conditions 
that are not expected to be caught under 
normal circumstances). i.e. stack overflow



Uncaught ExceptionsUncaught Exceptions
 If an exception is not caught by user program, then execution 

of the program stops and it is caught by the default handler 
provided by the Java run-time system

 Default handler prints a stack trace from the point at which the 
exception occurred, and terminates the program
Ex:
class Exc0 {

public static void main(String args[]) {
int d = 0;
int a = 42 / d;

}
}
Output:
java.lang.ArithmeticException: / by zero

at Exc0.main(Exc0.java:4)
Exception in thread "main" 



Using try and catchUsing try and catch

 Handling an exception has two benefits,
◦ It allows you to fix the error
◦ It prevents the program from automatically 

terminating
 The catch clause should follow immediately 

the try block
 Once an exception is thrown, program control 

transfer out of the try block into the catch block
 Once the catch statement has executed, 

program control continues with the next line in 
the program following the entire try/catch
mechanism



Example Example 

Output:
Division by zero.

After catch statement.



Using try and catchUsing try and catch
 A try and catch statement form a unit. The scope of 

the catch clause is restricted to those statements 
specified by the immediately preceding try statement



Multiple catch ClausesMultiple catch Clauses
 If more than one can occur, then we 

use multiple catch clauses
 When an exception is thrown, each 

catch statement is inspected in order, 
and the first one whose type matches 
that of the exception is executed

 After one catch statement executes, 
the others are bypassed



Example Example 



Example (Cont.)Example (Cont.)
 If no command line argument is 

provided, then you will see the 
following output:
a = 0

Divide by 0: java.lang.ArithmeticException: / by zero

After try/catch blocks

 If any command line argument is 
provided, then you will see the 
following output:
a = 1
Array index oob: java.lang.ArrayIndexOutOfBoundsException
After try/catch blocks.


