Course Name:
Advanced Java

Lecture 5
Topics to be covered

e Exception Handling

Exception Handling-

Introduction

« An exception is an abnormal condition that
arises in a code sequence at run time

e A Java exception is an object that describes
an exceptional condition that has occurred In
a piece of code

« When an exceptional condition arises, an
object representing that exception is created
and thrown in the method that caused the
error

* An exception can be caught to handle it or
pass it on

e Exceptions can be generated by the Java run-
time system, or they can be manually
generated by your code

Exception Handling-

Fundamentals

e Java exception handling is managed by via five
keywords: try, catch, throw, throws, and finally

e Program statements to monitor are contained
within a try block

e If an exception occurs within the try block, it is
thrown

e Code within catch block catch the exception and
handle it

o System generated exceptions are automatically
thrown by the Java run-time system

e To manually throw an exception, use the
keyword throw

e Any exception that is thrown out of a method
must be specified as such by a throws clause

Exception-Handling
Fundamentals

e Any code that absolutely must be executed
before a method returns is put in a finally block

o General form of an exception-handling block

try{
/] block of code to monitor for errors

}
catch (ExceptionTypel exOb){
/[exception handler for ExceptionTypel
}
catch (ExceptionType2 exOb){
Il exception handler for ExceptionType2
}
finally{
// block of code to be executed before try block ends

}

Exception Types

» All exception types are subclasses of the
built-in class Throwable

» Throwable has two subclasses, they are

- Exception (to handle exceptional
conditions that user programs should

catch)

An important subclass of Exception is
RuntimeException, that includes division by zero and
iInvalid array indexing

> Error (to handle exceptional conditions
that are not expected to be caught under
normal circumstances). i.e. stack overflow

Uncaught Exceptions

 If an exception is not caught by user program, then execution
of the program stops and it is caught by the default handler
provided by the Java run-time system

o Default handler prints a stack trace from the point at which the
exception occurred, and terminates the program
EX:
class ExcO {
public static void main(String argsl]) {
intd =0;
inta=42/d,;
}

}
Output:

java.lang.ArithmeticException: / by zero
at Exc0.main(ExcO0.java:4)
Exception in thread "main”

Using try and catch

» Handling an exception has two benefits,
> |t allows you to fix the error

> It prevents the program from automatically
terminating

o The catch clause should follow immediately
the try block

» Once an exception is thrown, program control
transfer out of the try block into the catch block

» Once the catch statement has executed,
program control continues with the next line in
the program following the entire try/catch
mechanism

Example

claz=s Excd |
public static void main(String args[]) 1
int d, a;

trvy { 4 monitor a block of code.
d = 0;
a = 42 / d;
Systen.out . println("This will not be printed. ") ;
+ catch (ArithmeticEzception) { /¢ catch divide-by-zero error
Sy=temn.out . println("Division by zero. ") ;
¥
Syztemn.out println("After catch statement. ")
I
I

Output:

Division by zero.

After catch statement.

Using try and catch

e Atry and catch statement form a unit. The scope of
the catch clause is restricted to those statements
specified by the immediately preceding try statement

import jawva.util Fandom:

=la== HandleError |
public =tatic woid main(String arg=s[]) 1
int a=0. b=0., ==0:
Fandom » = new Kandomi)

for{int 1=0; 1<10; 14++) {

Ly
b r.nextInt();

= r.nextInt();
a 12345 ~ (b))

} catch (ArithmeticEzception =) {
Sv=ten.out . println "Divi=ion by zero. ") ;
a = 0; - ==t a to zero and continus

T

Sy=tem.out . printlni"a: " + al;

ky

I | I | e’

¥
T

Multiple catch Clauses

e If more than one can occur, then we
use multiple catch clauses

» When an exception Is thrown, each
catch statement is inspected In order,
and the first one whose type matches
that of the exception Is executed

o After one catch statement executes,
the others are bypassed

Example

class MultiCatch {
public static woild maini(String args[])

try o
int a = arg=s.length;
Sv=ten.out . printlni"a = " + a);
int b = 42 ~ a;
int =[] = { 1 };
c[42] = 99;

+ catchiArithmeticEzception &) |
Svzten.out printlni "Divide by 0O + 2
+ catchiArrayIndexzCutOf Bound=sException &) {
Sy=tem.out . println "Array index ocob: "+ B

I
Svzten.out .println("After trvscatch blocks. ") ;

Example (Cont.)

 If no command line argument Is
provided, then you will see the
following output:
a=0
Divide by O: java.lang.ArithmeticException: / by zero
After try/catch blocks

e If any command line argument Is
provided, then you will see the
following output:

a=1
Array index oob: java.lang.ArraylndexOutOfBoundsException
After try/catch blocks.

