
Course Name:Course Name:
Advanced JavaAdvanced Java



Lecture 5Lecture 5
Topics to be coveredTopics to be covered

 Exception Handling



Exception HandlingException Handling--
IntroductionIntroduction
 An exception is an abnormal condition that 

arises in a code sequence at run time
 A Java exception is an object that describes 

an exceptional condition that has occurred in 
a piece of code

 When an exceptional condition arises, an 
object representing that exception is created 
and thrown in the method that caused the 
error

 An exception can be caught to handle it or 
pass it on

 Exceptions can be generated by the Java run-
time system, or they can be manually 
generated by your code



Exception HandlingException Handling--
FundamentalsFundamentals

 Java exception handling is managed by via five 
keywords: try, catch, throw, throws, and finally

 Program statements to monitor are contained 
within a try block

 If an exception occurs within the try block, it is 
thrown

 Code within catch block catch the exception and 
handle it

 System generated exceptions are automatically 
thrown by the Java run-time system

 To manually throw an exception, use the 
keyword throw

 Any exception that is thrown out of a method 
must be specified as such by a throws clause



ExceptionException--Handling Handling 
FundamentalsFundamentals

 Any code that absolutely must be executed 
before a method returns is put in a finally block

 General form of an exception-handling block
try{

// block of code to monitor for errors
}
catch (ExceptionType1 exOb){

// exception handler for ExceptionType1
}
catch (ExceptionType2 exOb){

// exception handler for ExceptionType2
}
finally{

// block of code to be executed before try block ends
}



Exception TypesException Types
 All exception types are subclasses of the 

built-in class Throwable
 Throwable has two subclasses, they are
◦ Exception (to handle exceptional 

conditions that user programs should 
catch)
 An important subclass of Exception is 

RuntimeException, that includes division by zero and 
invalid array indexing

◦ Error (to handle exceptional conditions 
that are not expected to be caught under 
normal circumstances). i.e. stack overflow



Uncaught ExceptionsUncaught Exceptions
 If an exception is not caught by user program, then execution 

of the program stops and it is caught by the default handler 
provided by the Java run-time system

 Default handler prints a stack trace from the point at which the 
exception occurred, and terminates the program
Ex:
class Exc0 {

public static void main(String args[]) {
int d = 0;
int a = 42 / d;

}
}
Output:
java.lang.ArithmeticException: / by zero

at Exc0.main(Exc0.java:4)
Exception in thread "main" 



Using try and catchUsing try and catch

 Handling an exception has two benefits,
◦ It allows you to fix the error
◦ It prevents the program from automatically 

terminating
 The catch clause should follow immediately 

the try block
 Once an exception is thrown, program control 

transfer out of the try block into the catch block
 Once the catch statement has executed, 

program control continues with the next line in 
the program following the entire try/catch
mechanism



Example Example 

Output:
Division by zero.

After catch statement.



Using try and catchUsing try and catch
 A try and catch statement form a unit. The scope of 

the catch clause is restricted to those statements 
specified by the immediately preceding try statement



Multiple catch ClausesMultiple catch Clauses
 If more than one can occur, then we 

use multiple catch clauses
 When an exception is thrown, each 

catch statement is inspected in order, 
and the first one whose type matches 
that of the exception is executed

 After one catch statement executes, 
the others are bypassed



Example Example 



Example (Cont.)Example (Cont.)
 If no command line argument is 

provided, then you will see the 
following output:
a = 0

Divide by 0: java.lang.ArithmeticException: / by zero

After try/catch blocks

 If any command line argument is 
provided, then you will see the 
following output:
a = 1
Array index oob: java.lang.ArrayIndexOutOfBoundsException
After try/catch blocks.


