
Course Name:Course Name:
Advanced JavaAdvanced Java

Lecture 12Lecture 12
Topics to be coveredTopics to be covered

 Sending E-Mail

How email works

Sending server

Sending client

Mail client software

Mail server software

Receiving server

Mail server software

Receiving client

Mail client software

SMTP POP

Three protocols for sending and retrieving email
messages
Protocol Description
SMTP Simple Mail Transfer Protocol is used to send a message

from one mail server to another.
POP Post Office Protocol is used to retrieve messages from a

mail server. This protocol transfers all messages from
the mail server to the mail client. Currently, POP is in
version 3 and is known as POP3.

IMAP Internet Message Access Protocol is used by web-based
mail services such as Hotmail and Yahoo. This protocol
allows a web browser to read messages that are stored in
the directories of the mail server. Currently, IMAP is in
version 4 and is known as IMAP4.

Protocol Description
MIME The Multipurpose Internet Message Extension type, or

MIME type, specifies the type of content that can be
sent as a message or attachment.

An introduction to the JavaMail API

 When an email message is sent, it goes from the sender’s mail

client to its mail server to the receiver’s mail server to the
receiver’s mail client.

 SMTP, POP, and IMAP are the protocols that are commonly
used for sending and receiving email messages.

 The JavaMail API is a high level API that allows you to use a
mail protocol to communicate with a mail server.

 The JavaMail API depends upon another API known as the
JavaBeans Activation Framework API, or the JAF API.

mail.jar Contains the Java classes for the JavaMail API.
activation.jar Contains the Java classes for the JavaBean Activation

Framework. These classes are necessary for the
JavaMail API to run.

Code that uses the JavaMail API to send an email

// 1 - get the mail session
Properties props = new Properties();
props.put("mail.smtp.host", "localhost");
Session session = Session.getDefaultInstance(props);

// 2 - create the message
MimeMessage message = new MimeMessage(session);
message.setSubject("Order Confirmation");
message.setText("Thanks for your order!");

// 3 – address the message
InternetAddress addressFrom = new
InternetAddress("av@cvsoftech.com");
message.setFrom(addressFrom);
InternetAddress addressTo = new
InternetAddress("abhimeenu2001@gmail.com");
message.setRecipient(Message.RecipientType.TO,addressTo);

// 4 - send the message
Transport.send(message);

mailto:av@cvsoftech.com
mailto:abhimeenu2001@gmail.com

A few standard properties that can be set for a
Session object
Property name Description
mail.smtp.host Specifies the default outgoing host for SMTP

protocol.
mail.from Specifies the default return email address.
mail.user Specifies the default username to use when

connecting to the mail server.

How to create a mail session

 A Session object contains information about the mail session. For

example, it contains information about the host and protocol for the
mail server, the return address, the username, and so on.

 The getDefaultInstance method of the Session class returns the default
Session object for the application.

 To supply default values for the properties of a Properties object, you
can create a Properties object and use the put method to specify each
property name and value.

 To specify the SMTP server for a session, you can use the
mail.smtp.host property to specify the host name of the SMTP server.

 If the Java application is running on the same server as the mail server,
use the localhost keyword to specify the host address.

 If the Java application isn’t running on the same server as the mail
server, contact your network administrator or ISP.

How to create a message
MimeMessage message = new MimeMessage(session);

How to set the subject line of a message
message.setSubject("Order Confirmation");

How to set the body of a plain text message
message.setText("Thanks for your order!");

How to set the body of an HTML message
message.setContent("<H1>Thanks for your order!</H1>",
 "text/html");

How to create a message
 You can use the MimeMessage class that’s stored in the

javax.mail.internet package to create a message. This message
extends the Message class that’s stored in the java.mail package.

 To create a MimeMessage object, you supply a valid Session
object to the MimeMessage constructor.

 Once you’ve created a MimeMessage object, you can use the
setSubject and setText methods to set the subject line and body of
the email message. This automatically sets the MIME type to
text/plain.

 You can use the setContent method to include an HTML
document as the body of the message. To do that, the first
argument specifies a string for the HTML document, and the
second argument specifies text/html as the MIME type.

How to set the From address
InternetAddress fromAddress = new InternetAddress("av@cvsoftech.com");
message.setFrom(fromAddress);

How to set the To address
InternetAddress toAddress = new
InternetAddress("abhimeenu2001@gmail.com");
message.setRecipient(Message.RecipientType.TO,toAddress);

How to set the CC address
InternetAddress ccAddress = new
InternetAddress("info@cvsoftech.com");
message.setRecipient(Message.RecipientType.CC,ccAddress);

How to set the BCC address
InternetAddress bccAddress = new
InternetAddress("admin@cvsoftech.com");
message.setRecipient(Message.RecipientType.BCC,bccAddress);

mailto:av@cvsoftech.com
mailto:abhimeenu2001@gmail.com
mailto:info@cvsoftech.com
mailto:admin@cvsoftech.com

How to address a message

 To define an email address, you can use the InternetAddress

class that’s stored in the javax.mail.internet package.
 You can use the setFrom method of the MimeMessage object to

set the From address.
 You can use the setRecipient and setRecipients methods of the

MimeMessage object to set the To, CC (carbon copy), and BCC
(blind carbon copy) addresses.

 To include a name that’s associated with an email address, you
can add a second argument to the InternetAddress constructor.

How to send a message
Transport.send(message);

Notes about this method
 The send method throws a SendFailedException object when a

message can’t be sent.
 If the SMTP host is incorrect in the session object, the send

method will throw a SendFailedException object.
 The SendFailedException class inherits the MessagingException

class. As a result, you can handle both of these exceptions by
handling the MessagingException.

A helper class with a method that sends an email
package util;
import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;

public class MailUtil{
 public static void sendMail(String to, String from,
 String subject, String messageText)
 throws MessagingException{

 // 1 - get a mail session
 Properties props = new Properties();
 props.put("mail.smtp.host", "localhost");
 Session session = Session.getDefaultInstance(props);
 // 2 - create a message
 MimeMessage message = new MimeMessage(session);
 message.setSubject(subject);
 message.setText(messageText);
 // 3 - address the message
 InternetAddress fromAddress = new InternetAddress(from);
 InternetAddress toAddress = new
 InternetAddress(to);
 message.setFrom(fromAddress);
 message.setRecipient(Message.RecipientType.TO,toAddress);
 // 4 - send the message
 Transport.send(message);
 }
}

A servlet that sends an email

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.mail.*;
import business.User;
import data.UserIO;
import util.MailUtil;

public class EmailServlet extends HttpServlet{

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException{

 String firstName = request.getParameter("firstName");
 String lastName = request.getParameter("lastName");
 String emailAddress =
 request.getParameter("emailAddress");

The servlet (continued)
 User user = new User(firstName, lastName,
 emailAddress);
 UserIO.addRecord(user,
 "../webapps/murach/WEB-INF/etc/UserEmail.txt");

 String to = emailAddress;
 String from = "emaillist@murach.com";
 String subject = "Welcome to our email list";
 String message = "Dear " + firstName + ",\n" +
 "Thanks for joining our email list. We'll make "
 + "sure to send you announcements about new "
 + "products and promotions.\n Have a great day "
 + "and thanks again!";

 try{
 MailUtil.sendMail(to, from, subject, message);
 }
 catch (MessagingException me){
 log("MessagingException: " + emailAddress);
 log(me.toString());
 }
 RequestDispatcher dispatcher =
 getServletContext().getRequestDispatcher(
 "/email12/show_email_entry.jsp");
 dispatcher.forward(request, response);
 }
}

mailto:emaillist@murach.com

