8254 PROGRAMMABLE INTERVAL TIMER
Introduction

- 8254 is a programmable interval timer. Which is widely used in clock driven digital circuits. Without timer there will not be proper synchronization between two devices. So it is very useful chip.
The 8254 consists of three independent 16-bit programmable counters (timers).

Each counter is capable of counting in binary or binary-coded decimal (BCD).
- maximum allowable input frequency to any counter is 10 MHz

Useful where the microprocessor must control real-time events.
Usage includes real-time clocks, event counters, and motor speed/direction control.

Timer appears in the PC decoded at ports 40H–43H to do the following:

- 1. Generate a basic timer interrupt that occurs at approximately 18.2 Hz
- 2. Cause the DRAM memory system to be refreshed
- 3. Provide a timing source to the internal speaker and other devices.

Timer in the PC is an 8253 instead of 8254.
8254 Functional Description

- Figure shows the pin-out of the 8254, a higher-speed version of the 8253, and a diagram of one of the three counters.

- Each timer contains:
 - a CLK input which provides the basic operating frequency to the timer
 - a gate input pin which controls the timer in some modes
 - an output (OUT) connection to obtain the output of the timer
Figure: The 8254 programmable interval timer. (a) Internal structure and (b) pin-out.
The signals that connect to the processor are the data bus pins (D₇–D₀), RD, WR, CS, and address inputs A₁ and A₀.

Address inputs are present to select any of the four internal registers.
 ◦ used for programming, reading, or writing to a counter
Timer zero generates an 18.2 Hz signal that interrupts the microprocessor at interrupt vector 8 for a clock tick. This is often used to time programs and events in DOS.

Timer 1 is programmed for 15 µs, used on the PC to request a DMA action used to refresh the dynamic RAM.

Timer 2 is programmed to generate a tone on the PC speaker.
Pin Definitions for 8254

A₀, A₁
- The **address inputs** select one of four internal registers within the 8254. See Table 11–4 for the function of the A₁ and A₀ address bits.

CLK
- The **clock** input is the timing source for each of the internal counters. This input is often connected to the PCLK signal from the microprocessor system bus controller.
Chip select enables 8254 for programming and reading or writing a counter.

Gate

- The *gate input* controls the operation of the counter in some modes of operation.

GND

- *Ground* connects to the system ground bus.
A counter output is where the waveform generated by the timer is available.

Read causes data to be read from the 8254 and often connects to the IORC signal.

Power connects to the +5.0 V power supply.
• **Write** causes data to be written to the 8254 and often connects to write strobe IOWC.
Programming the 8254

- Each counter is programmed by writing a control word, followed by the initial count.
 - fig 11–34 lists the program control word structure
- The control word allows the programmer to select the counter, mode of operation, and type of operation (read/write).
 - also selects either a binary or BCD count
Figure The control word for the 8254-2 timer.

- **SC1**, **SC0**: Selects a BCD when a logic 1
- **RW1**, **RW0**: Selects the mode (mode 0...mode 5)
- **M2**, **M1**, **M0**: Read/write control
 - 00 = counter latch command
 - 01 = read/write least-significant byte only
 - 10 = read/write most-significant byte only
 - 11 = read/write least-significant byte first, followed by the most-significant byte
- **BCD**: Selects counter
 - 00 = counter 0
 - 01 = counter 1
 - 10 = counter 2
 - 11 = read-back command
Each counter may be programmed with a count of 1 to FFFFH; A count of 0 is equal to FFFFH+1 (65,536) or 10,000 in BCD.

Timer 0 is used in the PC with a divide-by count of 64K (FFFH) to generate the 18.2 Hz (18.196 Hz) interrupt clock tick.
- timer 0 has a clock input frequency of 4.77 MHz + 4 or 1.1925 MHz

The order of programming is important for each counter, but programming of different counters may be interleaved for better control.
Modes of Operation

- six modes (0–5) of available to each of the 8254 counters
- each mode functions with the CLK input, the gate (G) control signal, and OUT signal
Mode 0 Interrupt on terminal count

- Allows 8254 to be used as an events counter.
- Output becomes logic 0 when the control word is written and remains until N plus the number of programmed counts.
- Note that gate (G) input must be logic 1 to allow the counter to count.
- If G becomes logic 0 in the middle of the count, the counter will stop until G again becomes logic 1.
Mode 1 Programmable one shot

- Causes function as a retriggerable, monostable multivibrator (one-shot).
- G input triggers the counter so it develops a pulse at the OUT connection that becomes logic 0 for the duration of the count.
 - if the count is 10, the OUT connection goes low for 10 clocking periods when triggered.
- If G input occurs within the output pulse, the counter is reloaded and the OUT connection continues for the total length of the count.
Mode 2 Rate Generator

- Allows the counter to **generate a series of continuous pulses** one clock pulse wide.
 - Pulse separation is determined by the count
- For a count of 10, output is logic 1 for nine clock periods and low for one clock period.
- The cycle is repeated until the counter is programmed with a new count or until the G pin is placed at logic 0.
 - G input must be logic 1 for this mode to generate a continuous series of pulses
Generates a continuous square wave at the OUT connection, provided the G pin is logic 1.

If the count is even, output is high for one half of the count and low for one half of the count.

If the count is odd, output is high for one clocking period longer than it is low.

- if the counter is programmed for a count of 5, the output is high for three clocks and low for two clocks.
Mode 4 S/W Trigger strobe

- Allows a **single pulse at the output**.
- If count is programmed as 10, output is high for 10 clocking periods and low for one period.
 - the cycle does not begin until the counter is loaded with its complete count
- Operates as a software triggered one-shot.
- As with modes 2 and 3, this mode also uses the G input to enable the counter.
 - G input must be logic 1 for the counter to operate for these three modes
Mode 5 H/W trigger strobe

- A hardware triggered one-shot that functions as mode 4, except it is started by a trigger pulse on the G pin instead of by software.
- This mode is also similar to mode 1 because it is retriggerable.
Scope

- Scope of research in this field are design of new timer chip which has more feature than existing timer chip and which are capable to interface with less hardware and software supports.