ATASTRUCTURES USING ‘C’

anagement

hapter 9

Ile Concept

S logical address space

er

File Attributes

Name — the only information kept in human-readable
form

ldentifier — unique tag (number) identifies file within file
system

Type — needed for systems that support different types
Location — pointer to file location on device
Size — current file size

Protection — controls who can do reading, writing,
executing

Time, date, and user identification — data for
protection, security, and usage monitoring

Information about files are kept in the directory structure,

which Is maintained on the disk ’

File Management

File management system consists of
system utility programs that run as
privileged applications

Input to applications is by means of a file

Output Is saved In a file for long-term
storage

File System Properties

Long-term existence
Stored on disk or secondary/tertiary storage

Sharable between processes
Access can be controlled, with permissions

Structure
Depending on the file structure, a file can have
Internal structure convenient for a particular
application.

Files can be organized in hierarchy or more
complex structure — to reflect relationships among

them.
6

File Operations

Create - define new file and position it within file
structure.

Delete - remove from the file structure and destroyed.
Open — to allow a process to perform functions on it.
Close - close with respect to a process.

Read - read all or a portion of a file.

Write (update) — add new data, or change values.

Used with Files

nt of data
Ingle value
d by its length and data type

related fields
unit
mployee record (Fields: name, emp_num,

or variable length

Used with Files

of similar records
a single entity

ames

t access

of related data
IpS exist among elements

cal Operations

_All

_One
_Next
_Previous
ne

One

One

Few

10

File Management Systems

A set of system software.

The way a user of application may
access files is through the FMS

Programmer does not need to develop
file management software

11

Objectives for a
File Management System

Meet the data management needs and
requirements of the user

Storage, abllity to perform operations
Guarantee that the data in the file are valid

Optimize performance
System throughput, response time (user’s view)

Provide I/O support for a variety of storage
device types

12

Objectives for a
File Management System

Minimize or eliminate the potential for lost
or destroyed data

Provide a standardized set of I1/O
Interface routines to user processes

Provide |/O support for multiple users

13

Minimal Set of Requirements

Each user should be able to create,
delete, read, write and modify files

Each user may have controlled access to
other users’ files

Each user may control what type of
accesses are allowed to the users’ files

Each user should be able to restructure
the user’s files in a form appropriate to
the problem

14

Minimal Set of Requirements

Each user should be able to move data
between files

Each user should be able to back up and
recover the user’s files in case of damage

Each user should be able to access the
user’s files by using symbolic names

15

. Indexed
S) A

Logical /O

Basic I/O Supervisor

Basic File System

Disk Device Driver Tape Device Driver

Figure 12.1 File System Software Architecture

16

User Program

. Indexed
S) A

Logical /O

Basic I/O Supervisor

Basic File System

Figure 12.1 File System Software Architecture

17

Device Drivers

| owest level

Communicates directly with peripheral devices
or their controllers or channels

Responsible for starting I/O operations on a
device

Processes the completion of an I/O request

Typical device controlled (for file operation):
disk drives, tape drives

Usually considered as part of OS

18

User Program

. Indexed
S) A

Logical /O

Basic I/O Supervisor

?7 — |
Basic File System
; I |

Figure 12.1 File System Software Architecture

19

Basic File System

A.k.a Physical I/O
Deals with exchanging blocks of data
Concerned with the placement of blocks

Concerned with buffering blocks in main
memory

Does not understand the content of data
or the structure of the files involved.

Also part of the OS.

20

. Indexed
S) A

Logical /O

Basic I/O Supervisor

Basic File System

Disk Device Driver Tape Device Driver

Figure 12.1 File System Software Architecture

21

Basic |/O Supervisor

Responsible for file I/O Initiation and
termination

Control structures are maintained

Concerned with selection of the device
on which file I/O is to be performed

Concerned with scheduling access to
optimize performance

Part of the operating system

22

Figure 12.1 File System Software Architecture

23

Logical I/O

Enables users and applications to access
records

Thus, whereas the basic file system deals
with blocks of data, the logical I/O module
deals with file records.

Provides general-purpose record 1/O
capabllity
Maintains basic data about file

24

User Program

. Indexed
o | | s

Logical /O

Basic I/O Supervisor

Basic File System

Figure 12.1 File System Software Architecture

25

Access Method

The level of file system closest to the
user Is often termed as access method

Reflect different file structures

Different ways to access and process
data

Provides standard interface between

applications and the file system and the
devices that hold the data.

26

ccess Methods

ccess Direct Access

read n

write n

position to n
read next
write next

rewrite n

n = relative block number

eginning

current position

end

—— read or write =

Organization

Ical structuring of records as
accessed.

file
guential file

shed file

28

User Program

. Indexed
o | | s

Logical /O

Basic I/O Supervisor

Basic File System

Figure 12.1 File System Software Architecture

29

The Pile

Least complicated form

Data are collected in the order they arrive

Purpose Is to accumulate a mass of data and save it
Records may have different fields

No structure

Record access Is by exhaustive search

Easy to update

But unsuitable for most applications

Used when data are collected before processing,

Or when data are not easy to organize
Uses space well

30

Pile

4I_‘

I’

Variable-length records
Variable set of fields
Chronological order

(a) Pile File

31

The Sequential File

Most common

Fixed format used for records

Records are the same length

All fields the same (order and length)

Field names and lengths are attributes of the file
One field is the key field (usually the first)

Uniquely identifies the record
Records are stored in key sequence

New records are placed in a log file or transaction file

Batch update is performed to merge the log file with the
master file

32

equential File

plications — optimum if involve
ords
roll applications

nization that can be stored on tape (as

In terms of searching.

33

guential File

Fixed-length records
Fixed set of fields in fixed order
Sequential order based on key field

(b) Sequential File e

Indexed Sequential File

Index provides a lookup capability to
guickly reach the vicinity of the desired
record

Contains key field and a pointer to the main

file

Indexed Is searched to find highest key value

that is equal to or precedes the desired key
value

Search continues In the main file at the
location indicated by the pointer

35

Indexed Sequential File

A popular approach to overcome the
disadvantages of sequential file.

Maintains the key characteristics of
sequential file — records are organized In
sequence based on the key field.

36

File Organization

Comparison of sequential and indexed sequential
Example: a file contains 1 million records

Sequential:
On average 500,000 accesses are required to find a
record in a sequential file

Indexed sequential:

If an index contains 1000 entries, it will take on
average 500 accesses to find the key, followed by
500 accesses In the main file. Now on average it is

1000 accesses.

37

Indexed Sequential File

New records are added to an overflow file

Record in main file that precedes it Is
updated to contain a pointer to the new
record

The overflow is merged with the main file
during a batch update

Multiple indexes for the same key field
can be set up to increase efficiency

38

d Sequential File

(c) Indexed Sequential File

39

Indexed File

Uses multiple indexes for different key fields

May contain an exhaustive index that contains
one entry for every record in the main file

The index Is organized as a sequential file for ease
of searching

May contain a partial index — contains entries
to records where the field of interest exists.
Used where timeliness of the info is critical and
where data are rarely processed exhaustively
E.g. airline reservation syst, inventory control syst.

40

dexed File

Exhaustive Exhaustive Partial

i.n7\ index in7\

|7

Primary File
{variable-length records)

(d) Indexed File

Direct or Hashed File

Directly access a block at a known address
Key field required for each record

Used where very rapid access is required,
Or where fixed-length records are used,

Or where records are always accessed one at
a time.

E.g. directories, pricing tables, schedules,
name lists.

42

Table 12.1 Grades of Performance for Five Basic File Organizations [WIEDS87]

Space Update Retrieval
Attributes Record Size
File Method Variable Fixed Equal Greater Single record Subset Exhaustive
Pile A B A E E D B
Sequential F A D F F D A
Indexed F B B D B D B
sequential
Indexed B C C C A B D
Hashed F B B F B F E
A Excellent, well suited to this purpose = O(r)
B = Good = o =)
C = Adequate = 0O(rlog n)
D = Requires some extra effort = O(n)
E = Possible with extreme effort = O(r = n)
F Not reasonable for this purpose = 00
where
» = size of the result
¢ = number of records that overflow

1 = number of records in file

43

Ile Management

Physical blocks Physical blocks

Records in main memory in secondary
buffers storage (disk)
File
Stroctare [
oy Diisk
ethod
" : Blocking scheduling

l *:*L* %:ITW

maniputation || — T monsgement

[allocation :l

control

File manmagement concerns

Operating system concerns

Figure 12.2 FElements of File Management
44

File Management Functions

ldentify and locate a selected file

Use a directory to describe the location of
all files plus their attributes

On a shared system describe user
access control

Blocking for access to files
Allocate files to free blocks
Manage free storage for available blocks

45

Criteria for File Organization

Short access time
Needed when accessing a single record
Not needed for batch mode

Ease of update

File on CD-ROM will not be updated, so this
IS NOt a concern

46

Criteria for File Organization

Economy of storage
Should be minimum redundancy in the data

Redundancy can be used to speed access
such as an index

Simple maintenance
Reliability

a7

File Directories

Contains Information about files
Attributes
Location
Ownership

Directory itself is a file owned by the
operating system

Provides mapping between file names
and the files themselves

48

Table 12.2 Information Elements of a File Directory

File Name
File Type

File Organization

Volume
Starting Address
Size Used

Size Allocated

Owner

Access Information

Permitted Actions

Basic Information

Name as chosen by creator (user or program). Must be unique within a specific directory.
For example: text, binary, load module, etc.

For systems that support different organizations

Address Information

Indicates device on which file is stored

Starting physical address on secondary storage (e.g.. cylinder, track, and block number on disk)
Current size of the file in bytes, words, or blocks

The maximum size of the file

Access Control Information

User who is assigned control of this file. The owner may be able to grant/deny access to other
users and to change these privileges

A simple version of this element would include the user's name and password for each
authorized user.

Controls reading, writing, executing, transmitting over a network

49

Usage Information

Date Created When file was first placed in directory

Identity of Creator Usually but not necessarily the current owner

Date Last Read Access Date of the last time a record was read

Identity of Last Reader User who did the reading

Date Last Modified Date of the last update, insertion, or deletion

Identity of Last Modifier User who did the modifving

Date of Last Backup Date of the last time the file was backed up on another storage medium

Current Usage Information about current activity on the file, such as process or processes that have the file

open, whether it is locked by a process, and whether the file has been updated in main memory
but not vet on disk

50

Simple Structure
for a Directory

List of entries, one for each file

Sequential file with the name of the file
serving as the key

Provides no help in organizing the files

Forces user to be careful not to use the
same name for two different files

51

Jle-Level Directory

ectory for all users

Two-level Scheme
for a Directory

One directory for each user and a master
directory

Master directory contains entry for each user
Provides address and access control information

Each user directory is a simple list of files for
that user

Still provides no help in structuring collections of
files

53

user file
directory

Irectory for each user

)-Level Directory

master file

directory el b usm\
test data a test X data

hing
apability

same file name for different user

Hierarchical, or
Tree-Structured Directory

Master directory with user directories
underneath it

Each user directory may have
subdirectories and files as entries

55

Master Directory

Subirectory Subirectory Subirectory

TR

Subirectory Subirectory File

TR

File File File

Figure 12.4 Tree-Structured Directory

56

-Structured Directories

oot | spell bin |pn:|grams|

e)\ b b 5”2”/ b

prog (copy

N2 8484 []

55656 64

Master Directory

E

Directory Directory
"User_C" l]lmr.:tur].r "User B" "User_A"
I.'Iirer:turg " Word" Dirﬂcturg "Draw"

l’
¥
¥
¥

Directory "Unit_A"

HHH!HH

¥
¥
¥

Pathmame: /User BWDraw/ABC
fUser_ B'Word/Unit_ASABC

Figure 12.5 Example of Tree-Structured Directory

58

Hierarchical, or
Tree-Structured Directory

Files can be located by following a path
from the root, or master, directory down
various branches

This is the pathname for the file

Can have several files with the same file
name as long as they have unique path
names

959

erarchical, or
ructured Directory

tory is the working directory

renced relative to the
ctory

60

Tree-Structured Directories

Absolute or relative path name

Creating a new file is done in current directory
Delete a file

rm <file-name>
Creating a new subdirectory is done in current directory
mkdir <dir-name>
Example: if in current directory /mail
mkdir count

maill

prog | copy | prt |exp| count

Deleting “mail” = deleting the entire subtree rooted by “mail”
61

File System Mounting

Just as a file must be opened before it can be
used, a file system must be mounted before it
can be accessed

A unmounted file system (i.e. Fig. 11-11(b)) Is
mounted at a mount point.

Mounting - the OS is given the name of the
device and the mount point.

The mount point is an empty directory.

62

ting. (b) Unmounted Partition

Residing on device/disk.
Cannot be accessed
_-———— - (before mounting)
- ~

~
M users S

() fred sue Jjane
(N
AR A
RN , =
| o help - doc

prog

(a) (b)

63

Mount Point

64

File Sharing

In multiuser system, allow files to be shared
among users

Sharing of files on multi-user systems is
desirable

Sharing may be done through a protection
scheme

On distributed systems, files may be shared
across a network

Network File System (NFS) is a common
distributed file-sharing method

65

File Sharing — Multiple Users

User IDs identify users, allowing
permissions and protections to be per-
user

Group IDs allow users to be in groups,
permitting group access rights

66

File Sharing — Remote File Systems

Uses networking to allow file system access between
systems
Manually via programs like FTP
Automatically, seamlessly using distributed file systems
Semi automatically via the world wide web

Client-server model allows clients to mount remote file
systems from servers
Server can serve multiple clients
Client and user-on-client identification is insecure or complicated
NFS is standard UNIX client-server file sharing protocol
CIFS iIs standard Windows protocol
Stﬁndard operating system file calls are translated into remote
calls
Distributed Information Systems (distributed naming
services) such as LDAP, DNS, NIS, Active Directory
Implement unified access to information needed for

remote computing
67

File Sharing — Failure Modes

Remote file systems add new failure modes,
due to network failure, server failure

Recovery from failure can involve state
Information about status of each remote
request

Stateless protocols such as NFS include all
Information in each request, allowing easy
recovery but less security

68

rotection

or should be able to control:
e

69

Access Lists and Groups

Mode of access: read, write, execute
Three classes of users

RWX
a) owner access 7 = 111
RWX
b) group access 6 = 110
RWX
C) public access 1 = 001

Ask manager to create a group (unique name), say G, and add
some users to the group.

For a particular file (say game) or subdirectory, define an

appropriate access.
owner grc‘)uwblic

chmod 761 game
Attach a group to a file:

chgrp G game 20

10.tex Froperties

| Ger‘leral| Securiby ISur‘nmaw|

ccess-control List Management

GI"DL,IF:I oarusernameas!;

I Administrators (PEBG-LAPTO Py Admministrators)
| £ Gue st (PEG-LAFPT OPGuest)
pho (CThpbg)

oSS TER

7 U zers (PEG-LAFTOP sers)

For special permissions or for adwvanced settings.
click &dwvanced.

A] [Fermomee l

Fermissions for Gue st A llone Denw
Full Control il
b ity o
Fead & Execute 1
Fead |
Write L
Special Permissions

[Aclvanced

[Ok | | cancel

] =t el %)

71

e UNIX Directory Listing

TWXIWXITWX 3

staff
staff
staff
student
staff
staff
faculty
staff
staff

31200
12
12
)12
9423
20471
)12
1024
)12

Sep 3 08:30
Jul 8 09.33
Jul 8 09:35
Aug 3 14:13

Fe
Fe

b 24 2003
b 24 2003

Ju

Aug 29 06:52

|31 10:31

Jul 8 09:35

Intro.ps
private/
doc/

student-proy/

program
program
lib/
mail/
test/

.C

72

Sharing
aring

ultaneous access

73

Access Rights

None

User may not know of the existence of the file, much
less access it

To enforce: User Is not allowed to read the user
directory that includes the file

Knowledge

User can only determine that the file exists and who
Its owner Is

User can then petition the owner for additional
access rights

74

Access Rights

Execution

The user can load and execute a program but
cannot copy it

E.g. propriety program
Reading

The user can read the file for any purpose, including
copying and execution

Some system allow viewing, but not copying
Appending

The user can add data to the file but cannot modify

or delete any of the file’s contents

75

Access Rights

modify, delete, and add to the file’'s
cludes creating the file, rewriting it, and
or part of the data

tection
nge access rights granted to other

ete the file

76

ccess Rights

previously listed

hts to others using the following
ers
I

files

77

Simultaneous Access

User may lock entire file when it is to be
updated

User may lock the individual records
during the update — finer grain

Mutual exclusion and deadlock are issues
for shared access

78

Record Blocking

For I/O to be performed, records must be
organized as blocks.

Issues:

Should blocks be fixed or variable length?
Fixed on most systems

What should the relative size of blocks?

Large blocks — more records passed in one 1/O
operation
Good for sequential processing

Bad for random access — unnecessary transfer of
unused records.

Also require larger buffer — difficult to manage.

79

ord Blocking
of blocking:

9
th spanned blocking

th unspanned blocking

80

Fixed Blocking

h records.

number of records are stored in a block
ternal fragmentation.

R4 R Track 1

R6

B RS
KRR
R7

Fixed Blocking

& Waste due to record fit to block size

. Gaps due to hardware design m Waste due to block size constraint
from fixed record size

-
% Waste due to block fit to track size

J

Variable Blocking: Spanned

Variable length records, no limit to record size.

Packed into blocks with no unused space — some

records must span two blocks, with the continuation
Indicated by a pointer.

(-) Records spanning 2 blocks require 2 1/O operations.

R6 a Track 1

Track 2

R1 R2 R3 R4 R4 RS
v «
R6 R7 RS R9 R9 | RI10 R11 | Ri12 |R13
N

Data

Variable Blocking: Spanned

Gaps due to hardware design

Waste due to block fit to track size

N

Waste due to record fit to block size

@ Waste due to block size constraint
from fixed record size

ble Blocking Unspanned

ngth records.
ng employed — limits record size <= block size.
iternal fragmentation.

lRl

Track 1

NN

R3 & R4 RS ®/

Track 2

v
AN

o NN | ow | e

Data

Variable Blocking: Unspanned

& Waste due to record fit to block size

. Gaps due to hardware design @ Waste due to block size constraint

from fixed record size

-
% Waste due to block fit to track size

83

Secondary Storage
Management

Space must be allocated to files

Must keep track of the space available for
allocation

On secondary storage, file consists of a
collection of blocks.

84

Preallocation

Need the maximum size for the file at the
time of creation

Difficult to reliably estimate the maximum
potential size of the file

Tend to overestimated file size so as not
to run out of space =» waste of unused

space.
Better to use dynamic allocation.

85

of File Allocation

llocation
tion (Chained)

ation

86

Contiguous Allocation

Single set of blocks Is allocated to a file
at the time of creation

Only a single entry Iin the file allocation
table

Starting block and length of the file

External fragmentation will occur
Need to perform compaction

87

File Allocation Table

File A File Name _Start Block__ Length
ANNVEE NN File A 2 3
File B 9 5
File C 18 8
I8 »[] File D 30 2
= File E 26 3
1o I [2[00 13 14

15 16 17 1817 vl
File C
2wl 207 2V 207 4107
File E
Em?n 2728 |29 Leads to external
3R 31T 32 33 34 fragmentation

__________/

Figure 12.7 Contiguous File Allocation

88

File Allocation Table

File Name Start Block Length
File A 0 3
File B 3 5
File C 8 8
File I 19 2
File E 16 3

» Best method for
sequential file

« Easy to retrieve a
single block

Figure 12.8 Contiguous File Allocation (After Compaction)

89

S

directory
file start length
count O 2
tr 14 3
mail 19 6
list 28 4
f 6 2

count
iR > | 3
f
4 5 6 7
s8] o[110 111]
tr
12[113 |IEl
16[_[17[_118[19|
mauil
ogll o [aaiag
24[125[26 27|
list
=g sl =aley

=

Another example of
contiguous allocation

90

Linked/Chained Allocation

Allocation on basis of individual block

Each block contains a pointer to the next block
In the chalin

Only single entry In the file allocation table
Starting block and length of file

No external fragmentation
Any free block can be added to a chain

Best for sequential files
No accommodation of the principle of locality

91

File Allocation Table

Figure 12.9

File Name Start Block Lgth
e 2 .-
Chained Allocation

92

File Allocation Table
File Name Start Block Length

File B 0 5

Figure 12.10 Chained Allocation (After Consolidation)

93

Linked Allocation

directory

file start end
jeep 9 25

17 18]J19[]
20]21 2 123]
24 25126 |27 []

28[29[130 131[]

94

llocation Table

directory entry

test | eee | 217 }—
name start block

—» 217 618

339 -

618 339

no. of disk blocks —1

FAT

Indexed Allocation

File allocation table contains a separate
one-level index for each file

The index has one entry for each portion
allocated to the file

The file allocation table contains block
number for the index

96

File Allocation Table
File Name Index Block
File B 24
1
8
3
14
.| 28

Figure 12.11 Indexed Allocation with Block Portions

97

File Allocation Table
File Name Index Block

File B 24

Start Block Length

1
28
14

—_— o L

Figure 12.12 Indexed Allocation with Variable-Length Portions

98

ol
4 1 5[|1 6l] 71
slL] 9 10&2&:[]
12[]13€§?3E§1]
16[gz[118]
20[]21[]22]

24[]25[Z§;£]27[]
28[29[130[131[]

2[] 3[]

directory
file index block
== 19

le of Indexed Allocation

99

Recovery

Consistency checking — compares data in
directory structure with data blocks on disk, and
tries to fix inconsistencies

Use system programs to back up data from
disk to another storage device (floppy disk,
magnetic tape, other magnetic disk, optical)

Recover lost file or disk by restoring data from
backup

100

