MCQ on set theory

Q. 1 . Which of the following are well-defined sets?

1. All the colors in the rainbow.
2. All the points that lie on a straight line.
3. All the honest members in the family.
4. All the efficient doctors of the hospital.
5. All the hardworking teachers in a school.
6. All the prime numbers less than 100.
Q. 2. Write the following sets in the set builder form.
7. $A=\{2,4,6,8\}$
8. $\quad \mathrm{B}=\{3,9,27,81\}$
9. $\mathrm{C}=\{1,4,9,16,25\}$
10. $\quad \mathrm{D}=\{1,3,5, \ldots \ldots\}$
11. $E=\{4,6,8,9,10,12,14,15,16,18,20, \ldots \ldots .52\}$
12. $F=\{-10, \ldots \ldots,-3,-2,-1,0,1,2, \ldots \ldots, 5\}$
13. $\mathrm{G}=\{\mathrm{O}\}$
14. $P=\{ \}$

Q. 3. Write the following sets in the roster form.

1. $A=\{x: x \in W, x \leq 5\}$
2. $B=\{x: x \in I,-3<x<3)$
3. $\quad \mathrm{C}=\{\mathrm{x}: \mathrm{x}$ is divisible by 12$\}$
4. $\mathrm{D}=\{\mathrm{x}: \mathrm{x}=3 \mathrm{p}, \mathrm{p} \in \mathrm{W}, \mathrm{p} \leq 3\}$
5. $\quad E=\{x: x=a 2, a \in N, 3<a<7\}$
6. $F=\{x: x=n /(n+1), n \in N$ and $n \leq 4\}$

Q.4. Which of the following are the examples of an empty set?

1. The set of even natural numbers divisible by 3 .
2. The set of all prime numbers divisible by 2 .
3. $\{x: x \in N, 5<x<6\}$
4. The set of odd natural numbers divisible by 2 .
5. $\mathrm{P}=\{\mathrm{x}: \mathrm{x}$ is a prime number, $54<\mathrm{x}<58\}$
6. $\mathrm{Q}=\{\mathrm{x}: \mathrm{x}=2 \mathrm{n}+3, \mathrm{n} \in \mathrm{W}, \mathrm{n} \leq 5\}$

Q. 5. Classify the following as finite and infinite sets.

1. The set of days in a week
2. $A=\{x: x \in N x>1\}$
3. $\quad B=\{x: x$ is an even prime number $\}$
4. $\mathrm{D}=\{\mathrm{x}: \mathrm{x}$ is a factor of 30$\}$
5. $P=\{x: x \in Z, x<-1\}$
Q. 6 The set $A=\left\{x, x \in N\right.$, and $\left.x^{2}-3 x+2=0\right\}$ is
6. Null set
7. Finite set
8. Infinite set
9. None of these
Q. 7 The set $A=\left\{x, x \in R\right.$, and $\left.x^{2}=9,2 x=4\right\}$ is
10. Empty set
11. Singleton set
12. Infinite set
13. None of these
Q. 8 Let $\mathrm{A}=\{\mathrm{x}: \mathrm{x}$ is a letter in the word $F O L L O W\}, B=\{\mathrm{y}: \mathrm{y}$ is a letter in the word WOLF $\}$
14. A \& B are disjoint
15. $\mathrm{A}=\mathrm{B}$
16. $\mathrm{A} \neq \mathrm{B}$
17. None of these

Q. 9 Are the following pairs of sets equal?

1. $\mathrm{A}=\{2\}$
$B=\{x: x \in N, x$ is an even prime number $\}$.
2. $P=\{1,4,9\} \quad Q=\{x: x=n 2, n \in N, n \leq 3)$
3. $\mathrm{X}=\{\mathrm{x}: \mathrm{x} \in \mathrm{W}, \mathrm{x}<5\} \quad \mathrm{Y}=\{\mathrm{x}: \mathrm{x} \in \mathrm{N}, \mathrm{x} \leq 5\}$
4. $M=\{a, b, c, d\} \quad N=\{p, q, r, s\}$
5. $\mathrm{D}=\{\mathrm{x}: \mathrm{x}$ is a multiple of 30$\} \quad \mathrm{E}=\{\mathrm{x}: \mathrm{x}$ is a factor of 10$\}$

Q.10. Which of the following are equivalent sets?

1. $A=\{1,2,3\} \quad B=\{4,5\}$
2. $P=\{q, \mathrm{~s}, \mathrm{~m}\} \quad \mathrm{Q}=\{6,9,12\}$
3. $\mathrm{X}=\{\mathrm{x}: \mathrm{x}$ is a prime number less than 10$\} \quad \mathrm{Y}=\{\mathrm{x}: \mathrm{x} \in \mathrm{N}, \mathrm{x} \leq 4\}$
4. $R=\{x: x=2 n+3, n<4, n \in N\} \quad S=\{x: x=n /(n+1), n \in R, n \leq 4\}$
5. The set of vowels in the English alphabet
6. The set of consonants in the English alphabet

Q. 11 . Find the cardinal number of the following sets.

1. $A=\{x: x \in I, 2<x<7\}$
2. $B=\{x: n \in N, x=n 2, n<3\}$
3. The set of months in a year
4. $C=\{x: x \in Z+, x<100\}$
5. $D=\{x: x=n 3, n \in W, n<5\}$
6. The set of letters in the word MALAYALAM

Q. 12 State whether true or false:

1. $\{5,7,9\}=\{9,7,5\}$
2. Sets $\{4,9,6,2\}$ and $\{6,2,4,9\}$ are not same.
3. Sets $\{0,1,3,9,4\}$ and $\{4,0,1,3,9\}$ are same.
4. $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{c}, \mathrm{d}\}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
5. $\{2,3,3,4,4\}=\{2,3,4\}$
6. Sets $\{5,4\}$ and $\{5,4,4,5\}$ are not same.
7. Sets $\{8,3\}$ and $\{3,3,8\}$ are same.
8. $\{\mathrm{x} \mid \mathrm{x}$ is a vowel in the word 'equation' $\}$
9. If M is the set of letters used in the word 'KOLKATA'; then $M=\{k, o, 1, a t\}$.
Q. 13 . Write each of the following sets in the shortest possible way:
10. $\{2,7,7,2,3,7,8\}$
11. $\{10-5,20-15,30-25,40-35,37-32\}$
12. $\{2+8,3+7,4+6,5+5,6+4,7+3\}$
13. $3,5,15,45,75$ and 90
Q. 14 Let $A=$ set of natural numbers less than $8, B=\{$ even natural numbers less than 12\} $C=\{$ Multiples of 3 between 5 and 15\},and $D=\{$ Multiples of 4 greater than 6 and less than 20\}; Find:
14. $(B \cap D) B \cup C$
15. $A \cup D$
16. $C \cup D$
17. $\mathrm{A} \cap \mathrm{C}$
18. $(B \cap C) \cup A$
19. $(\mathrm{D} \cup \mathrm{A}) \cap \mathrm{B}$
20. $(A \cap C) \cup$
21. $(B \cup D) \cap(C \cup A)$
Q. 15 If $A\{5,7,8,9\}, B=\{3,4,5,6\}$ and $C=\{2,4,6,8,10\}$; where n is total number of distinct elements in a set. Find:
22. $\mathrm{n}(\mathrm{A})+\mathrm{n}(\mathrm{B})$
23. $n(A \cup B)$
24. $n(A \cap B)$
25. $n(A \cup B)+n(A \cap B)$
26. $n(B)+n(C)-n(B \cap C)$
27. $n(A)+n(B)=n(A \cup B)+n(A \cap B)$?
28. \quad Is $n(B \cup C)=n(B)+n(C)-n(B \cap C)$?

Q. 16 Find the cardinal number of the following sets:

1. \{ \}
2. $\{0\}$
3. $\{3,7,11,15\}$
4. $\{3,3,3,4,4,5\}$
5. $\{\mathrm{x}: \mathrm{x}$ is a letter in the word 'STATISTICS' $\}$
6. $\{x: x$ is an odd whole number less than 12\}
7. $\{x: x \in N$ and $x 2<50\}$
8. $\{x: x$ is a factor of 12$\}$
Q. 17 Show by Venn diagrams the relationship between the following pairs of sets:
9. $\mathrm{X}=$ \{letters of English alphabet upto ' h ' $\} ; \quad \mathrm{Y}=\{$ all the vowels of English alphabet $\}$
10. $\mathrm{A}=\{$ even numbers less than 10$\} ; \quad \mathrm{B}=\{$ odd numbers less than 10$\}$
11. $\mathrm{C}=\{$ multiple of 5 less than 30$\} ; \quad \mathrm{D}=\{$ multiple of 3 less than 20$\}$
12. $\mathrm{M}=\{$ all girls of your school $\} ; \quad \mathrm{N}=\{$ all boys of your school $\}$
13. $\mathrm{P}=$ \{boys who play hockey $\} ; \quad \mathrm{Q}=$ \{boys who play cricket $\}$
6.. $\mathrm{R}=$ \{people who speak Hindi $\} ; \quad \mathrm{S}=$ \{people who speak Tamil $\}$
14. $\mathrm{U}=$ \{people who live in India $\} ; \quad \mathrm{V}=$ \{people who live in Bihar $\}$
15. $\mathrm{E}=\{$ men $\}$;
16. (ix) $S=\{$ all animals $\}$;
$\mathrm{F}=\{$ kings $\}$
$\mathrm{T}=$ \{people who wear shirts $\}$
Q.18. . If: $A=$ Set of natural numbers, $B=$ Set of prime numbers and $C=$ Set of even prime numbers

Draw Venn-diagram showing the relationship among the given sets A, B and C .
Q.19. Let $M=$ \{Natural numbers between 10 and 40 ; each divisible by 3$\}$ $\mathbf{N}=\{$ Natural numbers upto 40; each divisible by 4$\}$.

Draw a Venn-diagram showing the relationship between sets M and set N .
Q. 20 . Show by Venn diagrams the relationship between the following pairs of sets:

If: $A=$ Set of natural numbers, $B=$ Set of prime numbers and $C=$ Set of even prime numbers.

Draw Venn-diagram showing the relationship among the given sets A, B and C.
Q. 21 Let $M=\{$ Natural numbers between 10 and 40; each divisible by 3$\}$
$\mathrm{N}=\{$ Natural numbers upto 40 ; each divisible by 4$\}$.
Draw a Venn-diagram showing the relationship between sets M and set N .
Q. 22 If $A \cap B^{c}=\varnothing$

1. $\mathrm{A}=\mathrm{B}$
2. $\mathrm{B} \neq \mathrm{A}$
3. A is proper subset of B
4. None of these
Q. $23 \mathrm{~A}^{\mathrm{c}}-\mathrm{B}^{\mathrm{c}}$ is equal to
5. B-A
6. $\mathrm{A}-\mathrm{B}$
7. $A=B$
8. None of these
Q. 24 If $A=\emptyset$ then total number of elements in $P(A)$ are
9. No element
10. Zero
11. two
12. one
Q. 25 Let $A=\{a, b, c\}$ and $B=\{1,2\}$ then the number of relations from A into B are
13. 6
14. 5
15. 32
16. 64
Q. 26 Let R is the set of all triangles in a plane $a R b$ iff a is congruent to b, then R is
17. Only reflexive
18. Only Symmetric
19. Only Transitive relation
20. Equivalence relation
Q. 27 The relation " is parallel" on the set A of all coplanar straight line is :
21. Only reflexive
22. Only Symmetric
23. Only Transitive relation
24. Equivalence relation
Q. 28 Let $A=\{a, b, c\}$ and $R=\{(b, b),(c, a),(a, c)\}$, then the relation R on A is
25. Only reflexive
26. Only Symmetric
27. Only Transitive relation
28. None of these.
Q. 29 The relation " congruence modulo m " is
29. An equivalence
30. Reflexive only
31. Symmetric only
32. Transitive only
Q. 30 If $a N=\{a x, x \in N$,$\} then the set 3 N \cap 7 N$ is equal to
33. 7 N
34. 3 N
35. 21 N
36. \varnothing
Q. 31 A set has n elements, then the total number of subsets are
37. 2^{n}
38. $2^{\mathrm{n}-1}$
39. $2^{2 \mathrm{n}}$
40. None of these
Q. 32 A set has \mathbf{n} elements, then the total number of proper subsets are
41. 2^{n}
42. $2^{\mathrm{n}-1}$
43. $2^{2 n}$
44. None of these
Q. 33 The sets A\&B have 6 \& 9 elements respectively, such that A is proper subset B, then the total number of elements $A \cap B$ are
45. 6
46. 9
47. 3
48. 15
Q. 34 The sets A\& B have $5 \& 9$ elements respectively, such that A is proper subset B, then the total number of elements $A \cup B$ are
49. 5
50. 9
51. 14
52. 4
Q. 35 The smallest set A such that $A \cup\{4,5\}=\{1,2,3,4,5\}$ is
53. $\{3,4,5\}$
54. $\{1.2 .3\}$
55. $\{1,2\}$
56. $\{1,2,3,4,5\}$
Q. 36 Let X is a finite set containing n distinct elements, then total number of relation on X are equal to
57. 2^{n}
58. $2^{\mathrm{n}-1}$
$\begin{array}{ll}\text { 3. } & 2^{2 n} \\ \text { 4. } & 2^{n^{2}}\end{array}$
Q. 37 Which set is the subsets of all given sets
59. $\{1\}$
60. $\{0\}$
61. \varnothing
62. $\{0,1,6.7\}$
Q. 38 If $A=\{1,2,3\} \& B=\{4,5,6\}$ then,$n(A \times B)$ is equal to
63. 6
64. 9
65. 27
66. None of these
Q. 39 The number of relation that can be defined on the set $A=\{a, b, c\}$ are
67. 2^{9}
68. 9^{2}
69. 9
Q. 40 Let $X=\{1,2.3\}$ then the relation $R=\{(1,1),(2,2),(3,1)\}$ on X is
70. Reflexive
71. Symmetric
72. Transitive
73. None of these
Q. 41 Let $\mathrm{X} \& \mathrm{Y}$ are two finite sets s.t. $\mathrm{O}(\mathrm{X})=\mathbf{m \&} \mathbf{O}(\mathbf{Y})=\mathbf{n}$ then the number of relations from X to Y are
74. $2^{\mathrm{m}+\mathrm{n}}$
75. $\mathrm{m}+\mathrm{n}$
76. mn
77. 2^{mn}
Q. 42 If $A \& B$ are two sets such that $n(A)=15, n(B)=21, \& n(A \cup B)=36$ then $n(A \cap B)$ equal to
78. 2
79. 0
80. 4
81. 15
Q. 43 If $P \& Q$ are two sets such that $P \cup Q$ has 20 elements,P has 9 elements \& Q has 16 elements . How many elements does $P \cap Q$ have?
82. 5
83. 4
84. 3
85. 0
Q. 44 In a Group of $\mathbf{3 0 0}$ people, $\mathbf{1 5 0}$ can speak French $\& 200$ can speak German. How many can speak both French \& German.
86. 40
87. 50
88. 20
89. None of these
Q. 45 The relation R defined on the set of natural numbers as $\{(\mathbf{a}, \mathbf{b})$: a differs from \boldsymbol{b} by $\mathbf{3}\}$ is given
90. $\{(1,4),(2,5),(3,6), \ldots$.
91. $\{(4,1),(5,2),(6,3), \ldots$.
92. $\{(4,1),(5,2),(6,3), \ldots$.
93. None of the above
Q.46. The relation R defined on the set $A=\{1,2,3,4,5\}$ by $R=\left\{(x, y):\left|x^{2}-y^{2}\right|<16\right\}$ is given by
94. $\{(1,1),(2,1),(3,1),(4,1),(2,3)\}$
95. $\{(2,2),(3,2),(4,2),(2,4)\}$
96. $\{(3,3),(4,3),(5,4),(3,4)\}$
97. None of the above
Q. 47 If the binary operation * is defined on a set of ordered pairs of real number as $(\mathbf{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(\mathrm{ad}+\mathrm{bc}, \mathrm{bd})$ and is associative then $(1,2)^{*}(3,5)^{*}(3,4)$ equals
98. $(74,40)$
99. $(32,40)$
100. $(23,11)$
101. $(7,11)$
Q. 48 If $A=\{1,2,3,4\}$. let $\sim=\{(1,2),(1,3),(4,2)\}$. Then \sim is
102. Not anti-symmetric
103. Transitive
104. Reflexive
105. Symmetric
Q. 49 If $R=\{(1,2),(2,3),(3,3)\}$ be a relation defined on $A=\{1,2,3\}$ then $R=R^{\mathbf{2}}$ is
106. R itself
107. $\{(1,2),(2,3),(3,3)\}$
108. $\{(1,3),(2,3),(3,3)\}$
109. $\{(2,1),(1,3),(2,3)\}$
Q. 50 A binary opearion * on a set of integers is defined as $x * y=x^{2}+y^{2}$. Which one of the following statement is true about *
110. Commutative but not associative
111. Both Commutative and associative
112. Not Commutative but associative
113. Neither Commutative nor associative
Q. 51 How many onto (surjective) functions are there form an n-element($n \geq 2$) set to a 2elment set?
114. 2^{n}
115. $2^{\mathrm{n}}-1$
116. $2^{\mathrm{n}}-2$
117. $2\left(2^{\mathrm{n}}-2\right)$
Q. 52 What is the possible number of reflexive relations on a set of 5 elements
118. 2^{10}
119. 2^{15}
120. 2^{20}
121. 2^{25}
Q. 53 Consider the binary relation $R=\{(x, y),(x, z),(z, x),(z, y)\}$ on the set $\{x, y, z\}$, which one of the following is true
122. R is symmetric but Not antisymmetric
123. R is not symmetric but antisymmetric
124. R is both symmetric and antisymmetric
125. R is neither symmetric nor antisymmetric
Q. 54 For a set A, the power set of A is denoted by $2^{A,}$. If $A=\{5,\{6\},\{7\}\}$, which of the following option are true?
126. $\varnothing \in 2^{A}$
127. $\varnothing \subseteq 2^{\mathrm{A}}$
128. $\{5,\{6\}\} \in 2^{\mathrm{A}}$
129. . $\{5,\{6\}\} \subseteq 2^{A}$
Q. 55 If f is a function from A to B, where $O(A)=m \& O(B)=n$, then total number of distinct functions are
130. nm
131. n^{m}
132. m^{n}
133. $\mathrm{m}+\mathrm{n}$
Q. 56 A function f from N to N defined by $f(n)=2 n+5 \quad \forall n \in \boldsymbol{n}$ is
134. many-one function
135. into function
136. onto function
137. bijective function
Q. 57 If 63% of persons like banana, where 76% like apple. What can be said about the percentage of persons who like both banana \& apples?
138. 40
139. 39
140. 27
141. 24
Q. 58 The number of binary relation on a set with \mathbf{n} elements is
142. n^{2}
143. 2^{n}
144. $2^{n^{2}}$
145. None of these
Q. 59 The number of equivalence relations of the set $\{1,2,3,4\}$ is
146. 4
147. 15
148. 16
149. 24
Q. 60 Let A be a finite set of size n, the number of elements in the power set of $A \times A$ is
150. $2^{2^{n}}$
151. $2^{n^{2}}$
152. 2^{n}
153. None of these
Q. 61 Which of the following set(s) are empty ?
154. $\{\mathrm{x}: \mathrm{x}=\mathrm{x}\}$
155. $\{\mathrm{x}: \quad x \neq x\}$
156. $\left\{x: x=x^{2}\right\}$
157. $\left\{x: x \neq x^{2}\right\}$
Q. 62 If $A=\{x, y\}$, the power set of A is
158. $\{\{x\},\{y\}\}$
159. $\{\{\emptyset\},\{\mathrm{x}, \mathrm{y}\}\}$
160. $\{\emptyset,\{x\},\{y\}\}$
161. None of these
Q. 63 If $A \& B$ are sets and $A \cap B=A \cup B$, then
162. $A=\emptyset$
163. $\mathrm{B}=\varnothing$
164. $A=B$
165. None of these
Q. 64 The domain \& range are same for
166. constant function
167. Identity function
168. absolute value function
169. Greatest integer function
Q. 65 Set A has 3 elements $\&$ set B has 4 elements. The number of injections that can be defined from A into B
170. 144
171. 12
172. 24
173. 64
Q. 66 The number of bijective functions from set A to itself when A contains 106 elements is Is
174. 106
175. 106^{2}
176. 106 !
177. 2^{106}
Q. 67 Let Z denote the set of all integers define $f: Z \rightarrow Z$ by $f(x)=x / 2$, if x is even x, if x is odd then f is
178. Onto but not one-one
179. One-one but not onto
180. One-one \& onto
181. Neither one-one nor onto
Q. 68 To have inverse for the function f, f is
182. one one
183. onto
184. one one onto
185. identity function
Q. 69 If [x] denotes integral part of the real number, then the function $f(x)=x-[x]$ is $a / a n$
186. even function
187. odd function
188. periodic function
189. constant
Q. 70 The set of all equivalence classes of a set A of cardinality C
190. Has the same cardinality as A
191. forms a partition of A
192. is if cardinality 2 C
193. is of cardinality C^{2}
Q. 71 In a group of 72 students, 47 have background is electronics, 59 have background in Mathematics \& 42 have background in both the subjects. How many subjects do not have background in any of the subjects
194. 8
195. 13
196. 25
197. 34
Q. 72 The function $f: Z \rightarrow Z$ given by $f(x)=x^{2}$ is
198. one one
199. onto
200. one one \& onto
201. None of these
Q. 73 Let $A=\{x:-1<x<1\}=B$. The function $f(x)=x / 2$ from A to B is
202. Injective
203. surjective
204. Both Injective \& Surjective
205. Neither Injective nor Surjective
Q. $74 \quad A-(B \cup C)$ is equal to
206. $(A-B) \cup(A-C)$
207. $A-B-C$
208. $(A-B) \cap(A-C)$
209. $(A-B) \cup C$
Q. 75 The range of $f(x)=[\cos x]$ is
210. $\{-1,1\}$
211. $[-1,1]$
212. $\{-1,0,1\}$
213. $\{-1,1\}$
Q. 76 The range of the function $\mathrm{f}(\mathrm{x})=\sin [\mathrm{x}], \pi / 4<x<\pi / 4$
214. $\{-1,0,1\}$
215. $\{-1,1\}$
216. $\{-1 / \sqrt{2}, 1 / \sqrt{ } 2\}$
217. $\{0,-\sin 1\}$
Q. 77 The domain of the function , $f(x)=1 /(\sqrt{(x}-[x])$ is
218. R^{+}
219. R
220. Z
221. $\mathrm{R}-\mathrm{Z}$
Q. 78 If $f: R \rightarrow R$ is defined by $f(x)=x^{2}+1$, then value of $f^{-1}(17)$ is
222. $\{-2,2\}$
223. $\{-3,3\}$
224. $\{-4,4\}$
225. $\{\sqrt{ } 17,1\}$
Q. 79 The domain of $\sqrt{x-4} /(x-3)$ is .
226. $(-\infty, 3) \cup(4, \infty)$
227. $(-\infty, 3] \cup[4, \infty)$
228. $(-\infty, 3] \cup(4, \infty)$
229. None of these
Q. 80 Find the domain of function f defined by $f(x)=-1 /(x+3)$ is
230. $(-\infty,-3) \cup(-3, \infty)$
231. $(-\infty,-3] \cup[3, \infty)$
232. $(-\infty, 3] \cup(3, \infty)$
233. None of these
Q. 81 Let $X \& Y$ be finite sets and $f: X \rightarrow Y$ be a function. Which one of the following statement is true
234. For any subsets $\mathrm{A} \& \mathrm{~B}$ of $\mathrm{X}, \mid f(A \cup B|=| f(A|+=| f(B \mid)$
235. For any subsets A \& B of $X, f(A \cap B)=f(A) \cap f(B)$
236. For any subsets $\mathrm{A} \& \mathrm{~B}$ of $\mathrm{X}, \mid f(A \cap B \mid=\min (\mid f(A|| f,(B \mid)$
237. For any subsets A \& B of $X, f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$
Q. 82 Consider the set of all sets of all functions

$$
\text { f: }\{0,1,2,----------2015\} \rightarrow\{0,1,2,----------2015\} \text { such that } f(f(i))=\text { i for all }
$$

$0 \leq i \leq 2014$. Consider the following statements
a. For each such function it must be the case that for every $\mathrm{i}, \mathrm{f}(\mathrm{i})=\mathrm{i}$
b. For each such function, it must be the that for some $I, f(i)=i$
c. Each such function must be onto.

Which one of the following is correct

1. $a, b \& c$ are true.
2. Only b \& c are true
3. Only $a \& b$ are true
4. Only c is true.
Q. 83 Find the domain of function f defined by $f(x)=-1 /(x+3)$ is
5. $(-\infty,-3) \cup(-3, \infty)$
6. $(-\infty,-3] \cup[3, \infty)$
7. $(-\infty, 3] \cup(3, \infty)$
8. None of these
