MCO on set theory

Q.1. Which of the following are well-defined sets?

- 1. All the colors in the rainbow.
- 2. All the points that lie on a straight line.
- 3. All the honest members in the family.
- 4. All the efficient doctors of the hospital.
- All the hardworking teachers in a school. 5.
- 6. All the prime numbers less than 100.

Q. 2. Write the following sets in the set builder form.

- $A = \{2, 4, 6, 8\}$ 1.
- 2. $B = \{3, 9, 27, 81\}$
- 3. $C = \{1, 4, 9, 16, 25\}$
- $D = \{1, 3, 5, \dots\}$ 4.
- $E = \{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, \dots, 52\}$ 5.
- $F = \{-10, \dots, -3, -2, -1, 0, 1, 2, \dots, 5\}$ 6.
- 7. $G = \{O\}$
- 8. $P = \{ \}$

Q. 3. Write the following sets in the roster form.

- 1. $A = \{x : x \in W, x \le 5\}$
- 2. $B = \{x : x \in I, -3 < x < 3\}$
- 3. $C = \{x : x \text{ is divisible by } 12\}$
- 4.
- $D = \{x : x = 3p, p \in W, p \le 3\}$ E = {x : x = a2, a \in N, 3 < a < 7} 5.
- 6. $F = \{x : x = n/(n + 1), n \in N \text{ and } n \le 4\}$

Q.4. Which of the following are the examples of an empty set?

- The set of even natural numbers divisible by 3. 1.
- 2. The set of all prime numbers divisible by 2.
- 3. $\{x : x \in N, 5 < x < 6\}$
- The set of odd natural numbers divisible by 2. 4.
- 5. $P = \{x : x \text{ is a prime number, } 54 < x < 58\}$
- $Q = \{x : x = 2n + 3, n \in W, n \le 5\}$ 6.

Q. 5. Classify the following as finite and infinite sets.

- 1. The set of days in a week
- 2. $A = \{x : x \in N | x > 1\}$
- 3. $B = \{x : x \text{ is an even prime number}\}$
- 4. $D = \{x : x \text{ is a factor of } 30\}$
- 5. $P = \{x : x \in Z, x < -1\}$

Q.6 The set $A = \{x, x \in \mathbb{N}, and x^2 - 3x + 2 = 0\}$ is

- 1. Null set
- 2. Finite set
- 3. Infinite set
- 4. None of these

Q.7 The set $A = \{x, x \in \mathbb{R}, and x^2 = 9, 2x = 4\}$ is

- 1. Empty set
- 2. Singleton set
- 3. Infinite set
- 4. None of these

Q. 8 Let A= {x: x is a letter in the word FOLLOW}, B= {y: y is a letter in the word WOLF}

- 1. A & B are disjoint
- 2. A=B
- 3. A≠B
- 4. None of these

Q.9 Are the following pairs of sets equal?

- 1. $A = \{2\}$ $B = \{x : x \in N, x \text{ is an even prime number}\}.$
- 2. $P = \{1, 4, 9\}$ $Q = \{x : x = n2, n \in N, n \le 3\}$
- 3. $X = \{x : x \in W, x < 5\}$ $Y = \{x : x \in N, x \le 5\}$
- 4. $M = \{a, b, c, d\}$ $N = \{p, q, r, s\}$
- 5. $D = \{x : x \text{ is a multiple of } 30\}$ $E = \{x : x \text{ is a factor of } 10\}$

Q.10. Which of the following are equivalent sets?

- 1. $A = \{1, 2, 3\}$ $B = \{4, 5\}$
- 2. $P = \{q, s, m\}$ $Q = \{6, 9, 12\}$
- 3. $X = \{x : x \text{ is a prime number less than } 10\}$ $Y = \{x : x \in N, x \le 4\}$
- 4. $R = \{x : x = 2n + 3, n < 4, n \in N\}$ $S = \{x : x = n/(n + 1), n \in R, n \le 4\}$
- 5. The set of vowels in the English alphabet
- 6. The set of consonants in the English alphabet

Q.11 . Find the cardinal number of the following sets.

- 1. $A = \{x : x \in I, 2 < x < 7\}$
- 2. $B = \{x : n \in N, x = n2, n < 3\}$
- 3. The set of months in a year
- 4. $C = \{x : x \in Z+, x < 100\}$
- 5. $D = \{x : x = n3, n \in W, n < 5\}$
- 6. The set of letters in the word MALAYALAM

Q.12 State whether true or false:

- 1. $\{5, 7, 9\} = \{9, 7, 5\}$
- 2. Sets {4, 9, 6, 2} and {6, 2, 4, 9} are not same.
- 3. Sets $\{0, 1, 3, 9, 4\}$ and $\{4, 0, 1, 3, 9\}$ are same.
- 4. $\{a, b, c, c, d\} = \{a, b, c\}$
- 5. $\{2, 3, 3, 4, 4\} = \{2, 3, 4\}$
- 6. Sets $\{5, 4\}$ and $\{5, 4, 4, 5\}$ are not same.
- 7. Sets {8, 3} and {3, 3, 8} are same.
- 8. $\{x \mid x \text{ is a vowel in the word 'equation'}\}$
- 9. If M is the set of letters used in the word 'KOLKATA'; then $M = \{k, o, l, a, t\}$.

Q.13 . Write each of the following sets in the shortest possible way:

1. $\{2, 7, 7, 2, 3, 7, 8\}$

- 2. $\{10 5, 20 15, 30 25, 40 35, 37 32\}$
- 3. $\{2+8, 3+7, 4+6, 5+5, 6+4, 7+3\}$
- 4. 3, 5, 15, 45, 75 and 90

Q.14 Let A = set of natural numbers less than 8, B = {even natural numbers less than 12} C = {Multiples of 3 between 5 and 15}, and D = {Multiples of 4 greater than 6 and less than 20}; Find:

- 1. $(B \cap D) B \cup C$
- 2. À ∪ D
- 3. C U D
- 4. $A \cap C$
- 5. $(B \cap C) \cup A$
- 6. $(D \cup A) \cap B$
- 7. $(A \cap C) \cup$
- 8. $(\mathbf{B} \cup \mathbf{D}) \cap (\mathbf{C} \cup \mathbf{A})$

Q. 15 If A $\{5, 7, 8, 9\}$, B = $\{3, 4, 5, 6\}$ and C = $\{2, 4, 6, 8, 10\}$; where n is total number of distinct elements in a set. Find:

- 1. n(A) + n(B)
- 2. $n(A \cup B)$
- 3. $n(A \cap B)$
- 4. $n(A \cup B) + n(A \cap B)$
- 5. $n(B) + n(C) n(B \cap C)$
- 6. $n(A) + n(B) = n(A \cup B) + n(A \cap B)?$
- 7. Is $n(B \cup C) = n(B) + n(C) n(B \cap C)$?

Q.16 Find the cardinal number of the following sets:

- $1. \quad \{ \ \}$
- 2. $\{0\}$

2.

- 3. {3, 7, 11, 15}
- 4. $\{3, 3, 3, 4, 4, 5\}$
- 5. $\{x : x \text{ is a letter in the word 'STATISTICS'}\}$
- 6. $\{x : x \text{ is an odd whole number less than } 12\}$
- 7. $\{x : x \in N \text{ and } x2 < 50\}$
- 8. $\{x : x \text{ is a factor of } 12\}$

Q. 17 Show by Venn diagrams the relationship between the following pairs of sets:

- 1. $X = \{$ letters of English alphabet upto 'h' $\}; Y = \{$ all the vowels of English alphabet $\}$
 - A = {even numbers less than 10}; B = {odd numbers less than 10}
- 3. $C = \{ \text{multiple of 5 less than 30} \};$ $D = \{ \text{multiple of 3 less than 20} \}$
- 4. $M = \{ all girls of your school \};$
- 5. $P = \{boys who play hockey\};$
- 6.. $R = \{\text{people who speak Hindi}\};$
- 7. $U = \{ people who live in India \};$
- 8. $E = \{men\};$
- 9. (ix) $S = \{all animals\};$
- $V = \{people who live in Bihar\}$ $F = \{kings\}$

 $N = \{all boys of your school\}$

 $Q = \{boys who play cricket\}$

 $S = \{people who speak Tamil\}$

 $T = \{people who wear shirts\}$

Q.18. . If: A = Set of natural numbers, B = Set of prime numbers and C = Set of even prime numbers

Draw Venn-diagram showing the relationship among the given sets A, B and C.

Q.19 . Let M = {Natural numbers between 10 and 40; each divisible by 3} N = {Natural numbers upto 40; each divisible by 4}.

Draw a Venn-diagram showing the relationship between sets M and set N.

Q. 20 . Show by Venn diagrams the relationship between the following pairs of sets: If: A = Set of natural numbers, B = Set of prime numbers and C = Set of even prime numbers.

Draw Venn-diagram showing the relationship among the given sets A, B and C.

Q. 21 Let M = {Natural numbers between 10 and 40; each divisible by 3} N = {Natural numbers upto 40; each divisible by 4}.

Draw a Venn-diagram showing the relationship between sets M and set N.

Q.22 If $A \cap B^c = \emptyset$

- 1. A = B
- 2. $B \neq A$
- 3. A is proper subset of B
- 4. None of these

Q.23 A^{c} - B^{c} is equal to

- 1. B-A
- 2. A-B
- 3. A= B
- 4. None of these

Q. 24 If $A = \emptyset$ then total number of elements in P(A) are

- 1. No element
- 2. Zero
- 3. two
- 4. one

Q. 25 Let A= { a,b,c} and B= { 1,2} then the number of relations from A into B are 1. 6

- 2. 5
- 2. *3* 3. 32
- 4. 64
- **Q. 26** Let R is the set of all triangles in a plane aRb iff a is congruent to b, then R is 1. Only reflexive
 - 2. Only Symmetric
 - 3. Only Transitive relation
 - 4. Equivalence relation

Q. 27 The relation " is parallel" on the set A of all coplanar straight line is :

1. Only reflexive

- 2. Only Symmetric
- 3. Only Transitive relation
- 4. Equivalence relation

Q. 28 Let $A = \{a,b,c\}$ and $R = \{(b,b), (c,a),(a,c)\}$, then the relation R on A is

- 1. Only reflexive
- 2. Only Symmetric
- 3. Only Transitive relation
- 4. None of these.

Q.29 The relation " congruence modulo m" is

- 1. An equivalence
- 2. Reflexive only
- 3. Symmetric only
- 4. Transitive only

Q.30 If aN= { ax, $x \in N$, } then the set 3N \cap 7N is equal to

- 1. 7N 2. 3N
- 3. 21N
- 4. Ø

Q. 31 A set has n elements, then the total number of subsets are

- 1. 2^{n}
- $\frac{1}{2}$. $\frac{1}{2}$
- 3. 2^{2n}
- 4. None of these

Q.32 A set has n elements, then the total number of proper subsets are

- 1. 2^{n}
- $\bar{2}$. $\bar{2}^{n-1}$
- $\overline{3}$. 2^{2n}
- 4. None of these

Q.33 The sets A& B have 6 & 9 elements respectively, such that A is proper subset B, then the total number of elements $A \cap B$ are

- 1. 6
- 2. 9
- 3. 3
- 4. 15

Q.34 The sets A& B have 5 & 9 elements respectively, such that A is proper subset B , then the total number of elements $A \cup B$ are

- 1. 5
- 2. 9
- 3. 14
- 4. 4

Q.35 The smallest set A such that $A \cup \{4,5\} = \{1,2,3,4,5\}$ is

- 1. $\{3,4,5\}$ 2. $\{1.2.3\}$ 3. $\{1,2\}$
- 4. $\{1,2,3,4,5\}$

Q. 36 Let X is a finite set containing n distinct elements, then total number of relation on X are equal to

- 1. 2^n
- $\begin{array}{cccc} 2. & 2^{n-1} \\ 3. & 2^{2n} \\ 4. & 2^{n^2} \end{array}$

Q. 37 Which set is the subsets of all given sets

1. $\{1\}$ 2. $\{0\}$ 3. Ø 4. $\{0, 1, 6.7\}$

Q.38 If A= { 1,2,3 } & B= { 4,5,6 } then , $n(A \times B)$ is equal to

1. 6 2. 9 3. 27 4. None of these

Q. 39 The number of relation that can be defined on the set $A = \{a, b, c\}$ are

- 1. 2^9 2. 2^3 3. 9^2
- 4. 9

Q. 40 Let $X = \{1,2,3\}$ then the relation $R = \{(1,1),(2,2),(3,1)\}$ on X is

- 1. Reflexive
- Symmetric 2.
- 3. Transitive
- 4. None of these

Q. 41 Let X & Y are two finite sets s.t. O(X) = m & O(Y) = n then the number of relations from X to Y are

- 1. 2^{m+n}
- 2. m+n
- 3. mn
- 4. 2^{mn}

Q.42 If A & B are two sets such that n(A)=15, n(B)=21, & $n(A\cup B)=36$ then $n(A\cap B)$ equal to

- 1. 2
- 2. 0
- 3. 4
- 4. 15

O.43 If P & O are two sets such that P U O has 20 elements, P has 9 elements & O has 16 elements . How many elements does $P \cap Q$ have ?

- 1. 5
- 2. 4
- 3 3.
- 4. 0

Q. 44 In a Group of 300 people, 150 can speak French & 200 can speak German. How many can speak both French & German.

- 1. 40
- 2. 50
- 3. 20
- 4. None of these

Q.45 The relation R defined on the set of natural numbers as {(a, b): a differs from b by 3} is given

- 1. $\{(1, 4), (2, 5), (3, 6), \ldots\}$
- 2. { (4, 1), (5, 2), (6, 3), \dots } 3. { (4, 1), (5, 2), (6, 3), \dots }
- 4. None of the above

Q.46. The relation R defined on the set A = {1, 2, 3, 4, 5} by R = {(x, y) : $|x^2 - y^2| < 16$ } is given by

- 1. $\{(1, 1), (2, 1), (3, 1), (4, 1), (2, 3)\}$
- 2. $\{(2, 2), (3, 2), (4, 2), (2, 4)\}$
- 3. $\{(3, 3), (4, 3), (5, 4), (3, 4)\}$
- 4. None of the above

Q.47 If the binary operation * is defined on a set of ordered pairs of real number as (a,b)*(c,d)=(ad+bc, bd) and is associative then (1,2)*(3,5)*(3,4) equals

- 1. (74,40)
- 2. (32,40)
- 3. (23,11)
- 4. (7,11)

Q.48 If A = $\{1,2,3,4\}$. let ~ = $\{(1,2),(1,3),(4,2)\}$. Then ~ is

- 1. Not anti-symmetric
- 2. Transitive
- 3. Reflexive
- 4. Symmetric

Q.49 If R ={ (1,2),(2,3),(3,3)} be a relation defined on A= {1,2,3} then R = R² is

- 1. R itself
- 2. { (1,2),(2,3),(3,3) }
- 3. { (1,3),(2,3),(3,3) }
- 4. { (2,1),(1,3),(2,3) }

Q.50 A binary opearion * on a set of integers is defined as $x^*y = x^2 + y^2$. Which one of the following statement is true about *

- 1. Commutative but not associative
- 2. Both Commutative and associative
- 3. Not Commutative but associative
- 4. Neither Commutative nor associative

Q.51 How many onto (surjective) functions are there form an n-element $(n \ge 2)$ set to a 2elment set ?

- 1. 2^{n}
- 2. $2^n 1$
- 3. 2^{n} -2
- 4. $2(2^n 2)$

Q. 52 What is the possible number of reflexive relations on a set of 5 elements

- 1. $2^{\overline{10}}$
- 1. 22. 2^{15} 3. 2^{20}_{25}
- 4. 2^{25}

Q.53 Consider the binary relation $R = \{(x,y),(x,z),(z,y),(z,y)\}$ on the set $\{x,y,z\}$, which one of the following is true

- 1. R is symmetric but Not antisymmetric
- 2. R is not symmetric but antisymmetric
- 3. R is both symmetric and antisymmetric
- 4. R is neither symmetric nor antisymmetric

Q.54 For a set A, the power set of A is denoted by 2^{A_2} . If A= {5, {6}, {7}}, which of the following option are true?

1. $\emptyset \in 2^A$ 2. Ø ⊆2^A 3. $\{5, \{6\}\} \in 2^{A}$ 4..{5,{6}}⊆2^A

Q.55 If f is a function from A to B, where O(A) = m & O(B) = n, then total number of distinct functions are

- 1. nm
- 2. n^m
- mⁿ 3.
- 4. m+n

Q.56 A function f from N to N defined by $f(n) = 2n+5 \quad \forall n \in n$ is

- 1. many –one function
- 2. into function
- 3. onto function
- 4. bijective function

Q.57 If 63% of persons like banana, where 76% like apple. What can be said about the percentage of persons who like both banana & apples?

- 1. 40
- 2. 39
- 3. 27 4. 24
- Q.58 The number of binary relation on a set with n elements is
 - 1. n^2
 - 2. 2^n 3. 2^{n^2}
 - 4. None of these

Q.59 The number of equivalence relations of the set {1,2,3,4} is

- 1. 4
- 2. 15
- 3. 16 4. 24

Q.60 Let A be a finite set of size n, the number of elements in the power set of A×A is

- 1. 2^{2^n} $\begin{array}{c} 1. & 2\\ 2. & 2^{n^2}\\ 3. & 2^n \end{array}$
- 4. None of these

Q.61 Which of the following set(s) are empty ?

- 1. {x: $\mathbf{x} = \mathbf{x}$ 2. $\{x: x \neq x\}$ 3. {x: $x = x^{2}$ } 4. {x: $x \neq x^{2}$ }
- Q. 62 If $A = \{x, y\}$, the power set of A is
 - 1. $\{\{x\}, \{y\}\}$ 2. { { \emptyset }, {x,y}}
 - 3. $\{\emptyset, \{x\}, \{y\}\}$
 - 4. None of these

Q.63 If A & B are sets and $A \cap B = A \cup B$, then

- 1. A = Ø
- 2. B = Ø
- 3. A = B
- 4. None of these

Q.64 The domain & range are same for

- 1. constant function
- 2. Identity function
- 3. absolute value function
- 4. Greatest integer function

Q.65 Set A has 3 elements & set B has 4 elements . The number of injections that can be defined from A into B

- 1. 144
- 2. 12
- 3. 24
- 4. 64

Q.66 The number of bijective functions from set A to itself when A contains 106 elements is

- ls
- 1. 106
- 2. 106²
- 3. 106 !
 4. 2¹⁰⁶ !

Q.67 Let Z denote the set of all integers define $f: Z \to Z$ by f(x)=x/2, if x is even

x, if x is odd then f is

- 1. Onto but not one-one
- 2. One-one but not onto
- 3. One-one & onto
- 4. Neither one-one nor onto

Q.68 To have inverse for the function f, f is

- 1. one one
- 2. onto
- 3. one one onto
- 4. identity function

Q.69 If [x] denotes integral part of the real number, then the function f(x) = x - [x] is a/an

- 1. even function
- 2. odd function
- 3. periodic function
- 4. constant

Q.70 The set of all equivalence classes of a set A of cardinality C

- 1. Has the same cardinality as A
- 2. forms a partition of A
- 3. is if cardinality 2C
- 4. is of cardinality C^2

Q.71 In a group of 72 students, 47 have background is electronics, 59 have background in Mathematics & 42 have background in both the subjects. How many subjects do not have background in any of the subjects

- 1. 8
- 2. 13
- 3. 25
- 4.34

Q.72 The function $f : Z \rightarrow Z$ given by $f(x) = x^2$ is

- 1. one one
- 2. onto
- 3. one one & onto
- 4. None of these

Q.73 Let A = $\{x : -1 < x < 1\}$ = B. The function f(x) = x/2 from A to B is

- 1. Injective
- 2. surjective
- 3. Both Injective & Surjective
- 4. Neither Injective nor Surjective

Q.74 A-($\mathbf{B} \cup \mathbf{C}$) is equal to

- 1. (A-B) ∪ (A-C)
- 2. A-B-C
- 3. (A-B)∩ (A-C)
- 4. (A-B) ∪ C

Q.75 The range of f(x)= [cosx] is

- 1. {-1,1}
- 2. [-1,1] 3. { -1, 0,1}
- 4. {-1,1}

Q.76 The range of the function f(x)= sin[x] , $\pi/4 < x < \pi/4$

1. $\{-1,0,1\}$ 2. $\{-1,1\}$ 3. $\{-1/\sqrt{2}, 1/\sqrt{2}\}$ 4. $\{0, -\sin 1\}$

Q.77 The domain of the function , $f(x) = 1/(\sqrt{(x - [x])})$ is

- 1. R⁺
- 2. R⁻
- 3. Z
- 4. R-Z

Q.78 If f: $R \rightarrow R$ is defined by f(x) = x²+1, then value of f⁻¹(17) is

- 1. {-2,2}
- 2. {-3,3}
- 3. {-4,4}
- 4. {√17,1}

Q.79 The domain of $\sqrt{x-4}/(x-3)$ is .

- 1. $(-\infty, 3) \cup (4, \infty)$ 2. $(-\infty, 3] \cup [4, \infty)$
- 3. (-∞, 3] ∪ (4,∞)
- 4. None of these

Q.80 Find the domain of function f defined by f(x) = -1/(x+3) is

- 1. $(-\infty, -3) \cup (-3, \infty)$ 2. $(-\infty, -3] \cup [3, \infty)$
- 3. (-∞, 3] U (3,∞)
- 4. None of these

Q.81 Let X & Y be finite sets and f:X \rightarrow Y be a function. Which one of the following statement is true

- 1. For any subsets A & B of X , $|f(A \cup B)| = |f(A)| + |f(B)|$
- 2. For any subsets A & B of X, $f(A \cap B) = f(A) \cap f(B)$
- 3. For any subsets A & B of X, $|f(A \cap B)| = min(|f(A), |f(B)|)$
- 4. For any subsets A & B of X, $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$

Q.82 Consider the set of all sets of all functions

- f: $\{0,1,2,----2015\} \rightarrow \{0,1,2,----2015\}$ such that f(f(i)) = i for all $0 \le i \le 2014$. Consider the following statements
- a. For each such function it must be the case that for every i, f(i) = i
- b. For each such function, it must be the that for some I, f(i) = i
- c. Each such function must be onto.

Which one of the following is correct

- 1. a,b & c are true.
- 2. Only b & c are true
- 3. Only a & b are true
- 4. Only c is true.

Q. 83 Find the domain of function f defined by f(x) = -1/(x+3) is

- 1. (-∞, -3) ∪ (-3, ∞)
- 2. (-∞, -3] ∪ [3, ∞)
- 3. (-∞,3] ∪ (3,∞)
- 4. None of these