

LAB MANUAL OF
COMPILER DESIGN

LIST OF EXPERIMENTS

S. No. AIM OF EXPERIMENT

1. STUDY OF LEX AND YACC TOOLS.

2 TO CONVERT REGULAR EXPRESSION INTO NFA.

3 WAP TO FIND FIRST IN CFG.

4. WAP TO FIND STRING IS KEYWORD OR NOT.

5. WAP TO FIND STRING IS IDENTIFIER OR NOT.

6. WAP TO FIND STRING IS CONSTANT OR NOT.

7. WAP TO COUNT NO. OF WHITESPACES AND NEWLINE.

8. WAP TO GENERATE TOKENS FOR THE GIVEN GRAMMER.

9. AN ALGO TO CONVERT NFA TO DFA.

10. AN ALGO FOR MINIMIZING OF DFA.

11. WAP TO CHECK STRING IS IN GRAMMER OR NOT.

12. WAP TO CALCULATE LEADING FOR ALL NON
TERMINALS.

13. WAP TO CALCULATE TRAILING FOR ALL NON
TERMINALS.

PROGRAM NO:-1

PRACTICE OF LEX/YACC OF COMPILER WRITING

A compiler or interpreter for a programming language is often decomposed into
two parts:

1. Read the source program and discover its structure.
2. Process this structure, e.g. to generate the target program.

Lex and Yacc can generate program fragments that solve the first task.

The task of discovering the source structure again is decomposed into subtasks:

1. Split the source file into tokens (Lex).
2. Find the hierarchical structure of the program (Yacc).

Lex - A Lexical Analyzer Generator

Lex is a program generator designed for lexical processing of character input
streams. It accepts a high-level, problem oriented specification for character string
matching, and produces a program in a general purpose language which recognizes
regular expressions. The regular expressions are specified by the user in the source
specifications given to Lex. The Lex written code recognizes these expressions in
an input stream and partitions the input stream into strings matching the
expressions. At the boundaries between strings program sections provided by the
user are executed. The Lex source file associates the regular expressions and the
program fragments. As each expression appears in the input to the program written
by Lex, the corresponding fragment is executed.

Lex helps write programs whose control flow is directed by instances of regular
expressions in the input stream. It is well suited for editor-script type
transformations and for segmenting input in preparation for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments.
The table is translated to a program which reads an input stream, copying it to an
output stream and partitioning the input into strings which match the given
expressions. As each such string is recognized the corresponding program
fragment is executed. The recognition of the expressions is performed by a

deterministic finite automaton generated by Lex. The program fragments written
by the user are executed in the order in which the corresponding regular
expressions occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications
and choose the longest match possible at each input point. If necessary, substantial
lookahead is performed on the input, but the input stream will be backed up to the
end of the current partition, so that the user has general freedom to manipulate it.

Lex can generate analyzers in either C or Ratfor, a language which can be
translated automatically to portable Fortran. It is available on the PDP-11 UNIX,
Honeywell GCOS, and IBM OS systems. This manual, however, will only discuss
generating analyzers in C on the UNIX system, which is the only supported form
of Lex under UNIX Version 7. Lex is designed to simplify interfacing with Yacc,
for those with access to this compiler-compiler system.

Lex generates programs to be used in simple lexical analysis of text.
The input files (standard input default) contain regular expressions to
be searched for and actions written in C to be executed when
expressions are found.

A C source program, lex.yy.c is generated. This program, when run,
copies unrecognized portions of the input to the output, and executes
the associated C action for each regular expression that is recognized.

The options have the following meanings.
–t Place the result on the standard output instead of in file lex.yy.c.
–v Print a one–line summary of statistics of the generated analyzer.
–n Opposite of –v; –n is default.
–9 Adds code to be able to compile through the native C compilers.

EXAMPLE

This program converts upper case to lower, removes blanks at the end of lines,
and replaces multiple blanks by single blanks.

%%
[A–Z] putchar(yytext[0]+'a'–'A');
[]+$

[]+ putchar(' ');

1. Introduction.

Lex is a program generator designed for lexical processing of character input
streams. It accepts a high-level, problem oriented specification for character string
matching, and produces a program in a general purpose language which recognizes
regular expressions. The regular expressions are specified by the user in the source
specifications given to Lex. The Lex written code recognizes these expressions in
an input stream and partitions the input stream into strings matching the
expressions. At the boundaries between strings program sections provided by the
user are executed. The Lex source file associates the regular expressions and the
program fragments. As each expression appears in the input to the program written
by Lex, the corresponding fragment is executed.

The user supplies the additional code beyond expression matching needed to
complete his tasks, possibly including code written by other generators. The
program that recognizes the expressions is generated in the general purpose
programming language employed for the user's program fragments. Thus, a high
level expression language is provided to write the string expressions to be matched
while the user's freedom to write actions is unimpaired. This avoids forcing the
user who wishes to use a string manipulation language for input analysis to write
processing programs in the same and often inappropriate string handling language.

Lex is not a complete language, but rather a generator representing a new language
feature which can be added to different programming languages, called ``host
languages.'' Just as general purpose languages can produce code to run on different

computer hardware, Lex can write code in different host languages. The host
language is used for the output code generated by Lex and also for the program
fragments added by the user. Compatible run-time libraries for the different host
languages are also provided. This makes Lex adaptable to different environments
and different users. Each application may be directed to the combination of
hardware and host language appropriate to the task, the user's background, and the
properties of local implementations. At present, the only supported host language
is C, although Fortran (in the form of Ratfor [2] has been available in the past. Lex
itself exists on UNIX, GCOS, and OS/370; but the code generated by Lex may be
taken anywhere the appropriate compilers exist.

Lex turns the user's expressions and actions (called source in this memo) into the
host general-purpose language; the generated program is named yylex. The yylex
program will recognize expressions in a stream (called input in this memo) and
perform the specified actions for each expression as it is detected. See Figure 1.

 +-------+
 Source -> | Lex | -> yylex
 +-------+

 +-------+
 Input -> | yylex | -> Output
 +-------+

 An overview of Lex
 Figure 1
For a trivial example, consider a program to delete from the input all blanks or tabs
at the ends of lines.
 %%
 [\t]+$;
is all that is required. The program contains a %% delimiter to mark the beginning
of the rules, and one rule. This rule contains a regular expression which matches
one or more instances of the characters blank or tab (written \t for visibility, in
accordance with the C language convention) just prior to the end of a line. The
brackets indicate the character class made of blank and tab; the + indicates ``one or
more ...''; and the $ indicates ``end of line,'' as in QED. No action is specified, so
the program generated by Lex (yylex) will ignore these characters. Everything else
will be copied. To change any remaining string of blanks or tabs to a single blank,
add another rule:
 %%

 [\t]+$;
 [\t]+ printf(" ");
The finite automaton generated for this source will scan for both rules at once,
observing at the termination of the string of blanks or tabs whether or not there is a
newline character, and executing the desired rule action. The first rule matches all
strings of blanks or tabs at the end of lines, and the second rule all remaining
strings of blanks or tabs.

Lex can be used alone for simple transformations, or for analysis and statistics
gathering on a lexical level. Lex can also be used with a parser generator to
perform the lexical analysis phase; it is particularly easy to interface Lex and Yacc
[3]. Lex programs recognize only regular expressions; Yacc writes parsers that
accept a large class of context free grammars, but require a lower level analyzer to
recognize input tokens. Thus, a combination of Lex and Yacc is often appropriate.
When used as a preprocessor for a later parser generator, Lex is used to partition
the input stream, and the parser generator assigns structure to the resulting pieces.
The flow of control in such a case (which might be the first half of a compiler, for
example) is shown in Figure 2. Additional programs, written by other generators or
by hand, can be added easily to programs written by Lex.

 lexical grammar
 rules rules
 | |
 v v
 +---------+ +---------+
 | Lex | | Yacc |
 +---------+ +---------+
 | |
 v v
 +---------+ +---------+
 Input -> | yylex | -> | yyparse | -> Parsed input
 +---------+ +---------+

 Lex with Yacc
 Figure 2
Yacc users will realize that the name yylex is what Yacc expects its lexical
analyzer to be named, so that the use of this name by Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the regular expressions in the
source [4]. The automaton is interpreted, rather than compiled, in order to save
space. The result is still a fast analyzer. In particular, the time taken by a Lex
program to recognize and partition an input stream is proportional to the length of
the input. The number of Lex rules or the complexity of the rules is not important
in determining speed, unless rules which include forward context require a
significant amount of rescanning. What does increase with the number and
complexity of rules is the size of the finite automaton, and therefore the size of the
program generated by Lex.

In the program written by Lex, the user's fragments (representing the actions to be
performed as each regular expression is found) are gathered as cases of a switch.
The automaton interpreter directs the control flow. Opportunity is provided for the
user to insert either declarations or additional statements in the routine containing
the actions, or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted on the basis of one character
lookahead. For example, if there are two rules, one looking for ab and another for
abcdefg, and the input stream is abcdefh, Lex will recognize ab and leave the input
pointer just before cd. . . Such backup is more costly than the processing of simpler
languages.

2. Lex Source.

The general format of Lex source is:
 {definitions}
 %%
 {rules}
 %%
 {user subroutines}
where the definitions and the user subroutines are often omitted. The second %% is
optional, but the first is required to mark the beginning of the rules. The absolute
minimum Lex program is thus
 %%
(no definitions, no rules) which translates into a program which copies the input to
the output unchanged.

In the outline of Lex programs shown above, the rules represent the user's control
decisions; they are a table, in which the left column contains regular expressions
(see section 3) and the right column contains actions, program fragments to be

executed when the expressions are recognized. Thus an individual rule might
appear

 integer printf("found keyword INT");
to look for the string integer in the input stream and print the message ``found
keyword INT'' whenever it appears. In this example the host procedural language is
C and the C library function printf is used to print the string. The end of the
expression is indicated by the first blank or tab character. If the action is merely a
single C expression, it can just be given on the right side of the line; if it is
compound, or takes more than a line, it should be enclosed in braces. As a slightly
more useful example, suppose it is desired to change a number of words from
British to American spelling. Lex rules such as
 colour printf("color");
 mechanise printf("mechanize");
 petrol printf("gas");
would be a start. These rules are not quite enough, since the word petroleum would
become gaseum; a way of dealing with this will be described later.

3. Lex Regular Expressions.

The definitions of regular expressions are very similar to those in QED [5]. A
regular expression specifies a set of strings to be matched. It contains text
characters (which match the corresponding characters in the strings being
compared) and operator characters (which specify repetitions, choices, and other
features). The letters of the alphabet and the digits are always text characters; thus
the regular expression
 integer
matches the string integer wherever it appears and the expression
 a57D
looks for the string a57D.

Operators. The operator characters are

 " \ [] ^ - ? . * + | () $ / { } % < >
and if they are to be used as text characters, an escape should be used. The
quotation mark operator (") indicates that whatever is contained between a pair of
quotes is to be taken as text characters. Thus
 xyz"++"

matches the string xyz++ when it appears. Note that a part of a string may be
quoted. It is harmless but unnecessary to quote an ordinary text character; the
expression
 "xyz++"
is the same as the one above. Thus by quoting every non-alphanumeric character
being used as a text character, the user can avoid remembering the list above of
current operator characters, and is safe should further extensions to Lex lengthen
the list.

An operator character may also be turned into a text character by preceding it with
\ as in

 xyz\+\+
which is another, less readable, equivalent of the above expressions. Another use
of the quoting mechanism is to get a blank into an expression; normally, as
explained above, blanks or tabs end a rule. Any blank character not contained
within [] (see below) must be quoted. Several normal C escapes with \ are
recognized: \n is newline, \t is tab, and \b is backspace. To enter \ itself, use \\.
Since newline is illegal in an expression, \n must be used; it is not required to
escape tab and backspace. Every character but blank, tab, newline and the list
above is always a text character.

Character classes. Classes of characters can be specified using the operator pair [].
The construction [abc] matches a single character, which may be a, b, or c. Within
square brackets, most operator meanings are ignored. Only three characters are
special: these are \ - and ^. The - character indicates ranges. For example,

 [a-z0-9<>_]
indicates the character class containing all the lower case letters, the digits, the
angle brackets, and underline. Ranges may be given in either order. Using -
between any pair of characters which are not both upper case letters, both lower
case letters, or both digits is implementation dependent and will get a warning
message. (E.g., [0-z] in ASCII is many more characters than it is in EBCDIC). If it
is desired to include the character - in a character class, it should be first or last;
thus
 [-+0-9]
matches all the digits and the two signs.

In character classes, the ^ operator must appear as the first character after the left
bracket; it indicates that the resulting string is to be complemented with respect to
the computer character set. Thus

 [^abc]
matches all characters except a, b, or c, including all special or control characters;
or
 [^a-zA-Z]
is any character which is not a letter. The \ character provides the usual escapes
within character class brackets.

Arbitrary character. To match almost any character, the operator character . is the
class of all characters except newline. Escaping into octal is possible although non-
portable:

 [\40-\176]
matches all printable characters in the ASCII character set, from octal 40 (blank) to
octal 176 (tilde).

Optional expressions. The operator ? indicates an optional element of an
expression. Thus

 ab?c
matches either ac or abc.

Repeated expressions. Repetitions of classes are indicated by the operators * and +.

 a*
is any number of consecutive a characters, including zero; while
 a+
is one or more instances of a. For example,
 [a-z]+
is all strings of lower case letters. And
 [A-Za-z][A-Za-z0-9]*
indicates all alphanumeric strings with a leading alphabetic character. This is a
typical expression for recognizing identifiers in computer languages.

Alternation and Grouping. The operator | indicates alternation:

 (ab|cd)

matches either ab or cd. Note that parentheses are used for grouping, although they
are not necessary on the outside level;
 ab|cd
would have sufficed. Parentheses can be used for more complex expressions:
 (ab|cd+)?(ef)*
matches such strings as abefef, efefef, cdef, or cddd; but not abc, abcd, or abcdef.

Context sensitivity. Lex will recognize a small amount of surrounding context. The
two simplest operators for this are ^ and $. If the first character of an expression is
^, the expression will only be matched at the beginning of a line (after a newline
character, or at the beginning of the input stream). This can never conflict with the
other meaning of ^, complementation of character classes, since that only applies
within the [] operators. If the very last character is $, the expression will only be
matched at the end of a line (when immediately followed by newline). The latter
operator is a special case of the / operator character, which indicates trailing
context. The expression

 ab/cd
matches the string ab, but only if followed by cd. Thus
 ab$
is the same as
 ab/\n
Left context is handled in Lex by start conditions as explained in section 10. If a
rule is only to be executed when the Lex automaton interpreter is in start condition
x, the rule should be prefixed by
 <x>
using the angle bracket operator characters. If we considered ``being at the
beginning of a line'' to be start condition ONE, then the ^ operator would be
equivalent to
 <ONE>
Start conditions are explained more fully later.

Repetitions and Definitions. The operators {} specify either repetitions (if they
enclose numbers) or definition expansion (if they enclose a name). For example

 {digit}
looks for a predefined string named digit and inserts it at that point in the
expression. The definitions are given in the first part of the Lex input, before the
rules. In contrast,
 a{1,5}

looks for 1 to 5 occurrences of a.

Finally, initial % is special, being the separator for Lex source segments.

4. Ambiguous Source Rules.

Lex can handle ambiguous specifications. When more than one expression can
match the current input, Lex chooses as follows:

1) The longest match is preferred.

2) Among rules which matched the same number of characters, the rule given first
is preferred.

Thus, suppose the rules

 integer keyword action ...;
 [a-z]+ identifier action ...;
to be given in that order. If the input is integers, it is taken as an identifier, because
[a-z]+ matches 8 characters while integer matches only 7. If the input is integer,
both rules match 7 characters, and the keyword rule is selected because it was
given first. Anything shorter (e.g. int) will not match the expression integer and so
the identifier interpretation is used.

The principle of preferring the longest match makes rules containing expressions
like .* dangerous. For example, '.*' might seem a good way of recognizing a string
in single quotes. But it is an invitation for the program to read far ahead, looking
for a distant single quote. Presented with the input

 'first' quoted string here, 'second' here
the above expression will match
 'first' quoted string here, 'second'
which is probably not what was wanted. A better rule is of the form
 '[^'\n]*'
which, on the above input, will stop after 'first'. The consequences of errors like
this are mitigated by the fact that the . operator will not match newline. Thus
expressions like .* stop on the current line. Don't try to defeat this with expressions
like (.|\n)+ or equivalents; the Lex generated program will try to read the entire
input file, causing internal buffer overflows.

Note that Lex is normally partitioning the input stream, not searching for all
possible matches of each expression. This means that each character is accounted
for once and only once. For example, suppose it is desired to count occurrences of
both she and he in an input text. Some Lex rules to do this might be

 she s++;
 he h++;
 \n |
 . ;
where the last two rules ignore everything besides he and she. Remember that .
does not include newline. Since she includes he, Lex will normally not recognize
the instances of he included in she, since once it has passed a she those characters
are gone.

Sometimes the user would like to override this choice. The action REJECT means
``go do the next alternative.'' It causes whatever rule was second choice after the
current rule to be executed. The position of the input pointer is adjusted
accordingly. Suppose the user really wants to count the included instances of he:

 she {s++; REJECT;}
 he {h++; REJECT;}
 \n |
 . ;
these rules are one way of changing the previous example to do just that. After
counting each expression, it is rejected; whenever appropriate, the other expression
will then be counted. In this example, of course, the user could note that she
includes he but not vice versa, and omit the REJECT action on he; in other cases,
however, it would not be possible a priori to tell which input characters were in
both classes.

Consider the two rules

 a[bc]+ { ... ; REJECT;}
 a[cd]+ { ... ; REJECT;}
If the input is ab, only the first rule matches, and on ad only the second matches.
The input string accb matches the first rule for four characters and then the second
rule for three characters. In contrast, the input accd agrees with the second rule for
four characters and then the first rule for three.

In general, REJECT is useful whenever the purpose of Lex is not to partition the
input stream but to detect all examples of some items in the input, and the
instances of these items may overlap or include each other. Suppose a digram table
of the input is desired; normally the digrams overlap, that is the word the is
considered to contain both th and he. Assuming a two-dimensional array named
digram to be incremented, the appropriate source is

 %%
 [a-z][a-z] {
 digram[yytext[0]][yytext[1]]++;
 REJECT;
 }
 . ;
 \n ;
where the REJECT is necessary to pick up a letter pair beginning at every
character, rather than at every other character.

5. Lex Source Definitions.

Remember the format of the Lex source:
 {definitions}
 %%
 {rules}
 %%
 {user routines}
So far only the rules have been described. The user needs additional options,
though, to define variables for use in his program and for use by Lex. These can go
either in the definitions section or in the rules section.

Remember that Lex is turning the rules into a program. Any source not intercepted
by Lex is copied into the generated program. There are three classes of such things.

1) Any line which is not part of a Lex rule or action which begins with a blank or
tab is copied into the Lex generated program. Such source input prior to the first
%% delimiter will be external to any function in the code; if it appears
immediately after the first %%, it appears in an appropriate place for declarations
in the function written by Lex which contains the actions. This material must look
like program fragments, and should precede the first Lex rule. As a side effect of
the above, lines which begin with a blank or tab, and which contain a comment, are
passed through to the generated program. This can be used to include comments in

either the Lex source or the generated code. The comments should follow the host
language convention.

2) Anything included between lines containing only %{ and %} is copied out as
above. The delimiters are discarded. This format permits entering text like
preprocessor statements that must begin in column 1, or copying lines that do not
look like programs.

3) Anything after the third %% delimiter, regardless of formats, etc., is copied out
after the Lex output.

Definitions intended for Lex are given before the first %% delimiter. Any line in
this section not contained between %{ and %}, and begining in column 1, is
assumed to define Lex substitution strings. The format of such lines is name
translation and it causes the string given as a translation to be associated with the
name. The name and translation must be separated by at least one blank or tab, and
the name must begin with a letter. The translation can then be called out by the
{name} syntax in a rule. Using {D} for the digits and {E} for an exponent field,
for example, might abbreviate rules to recognize numbers:

 D [0-9]
 E [DEde][-+]?{D}+
 %%
 {D}+ printf("integer");
 {D}+"."{D}*({E})? |
 {D}*"."{D}+({E})? |
 {D}+{E}
Note the first two rules for real numbers; both require a decimal point and contain
an optional exponent field, but the first requires at least one digit before the
decimal point and the second requires at least one digit after the decimal point. To
correctly handle the problem posed by a Fortran expression such as 35.EQ.I, which
does not contain a real number, a context-sensitive rule such as
 [0-9]+/"."EQ printf("integer");
could be used in addition to the normal rule for integers.

The definitions section may also contain other commands, including the selection
of a host language, a character set table, a list of start conditions, or adjustments to
the default size of arrays within Lex itself for larger source programs.

Yacc: Yet Another Compiler-Compiler

yacc is a computer program that serves as the standard parser generator on Unix
systems. The name is an acronym for "Yet Another Compiler Compiler." It
generates a parser (the part of a compiler that tries to make sense of the input)
based on an analytic grammar written in BNF notation. Yacc generates the code
for the parser in the C programming language.
Yacc provides a general tool for imposing structure on the input to a computer
program. The Yacc user prepares a specification of the input process; this includes
rules describing the input structure, code to be invoked when these rules are
recognized, and a low-level routine to do the basic input. Yacc then generates a
function to control the input process. This function, called a parser, calls the user-
supplied low-level input routine (the lexical analyzer) to pick up the basic items
(called tokens) from the input stream. These tokens are organized according to the
input structure rules, called grammar rules; when one of these rules has been
recognized, then user code supplied for this rule, an action, is invoked; actions
have the ability to return values and make use of the values of other actions.

Yacc provides a general tool for describing the input to a computer program. The
Yacc user specifies the structures of his input, together with code to be invoked as
each such structure is recognized. Yacc turns such a specification into a subroutine
that handles the input process; frequently, it is convenient and appropriate to have
most of the flow of control in the user's application handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to return the
next basic input item. Thus, the user can specify his input in terms of individual
input characters, or in terms of higher level constructs such as names and numbers.
The user-supplied routine may also handle idiomatic features such as comment and
continuation conventions, which typically defy easy grammatical specification.

Yacc is written in portable C. The class of specifications accepted is a very general
one: LALR(1) grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yacc has also been
used for less conventional languages, including a phototypesetter language, several
desk calculator languages, a document retrieval system, and a Fortran debugging
system.

Yacc converts a context–free grammar and translation code into a set of tables for
an LR(1) parser and translator. The grammar may be ambiguous; specified
precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a program
yyparse. This program must be loaded with a lexical analyzer function, yylex(void)
(often generated by lex(1)), with a main(int argc, char *argv[]) program, and
with an error handling routine, yyerror(char*).

The options are
–o output Direct output to the specified file instead of y.tab.c.
–Dn Create file y.debug, containing diagnostic messages.

v Create file y.output, containing a description of the parsing tables and of
conflicts arising from ambiguities in the grammar.
–d Create file y.tab.h, containing #define statements that associate yacc–
assigned `token codes' with user–declared `token names'. Include it in source files
other than y.tab.c to give access to the token codes.
–s stem Change the prefix y of the file names y.tab.c, y.tab.h, y.debug, and
y.output to stem.
–S Write a parser that uses Stdio instead of the print routines in libc.

1: Introduction

Yacc provides a general tool for imposing structure on the input to a computer
program. The Yacc user prepares a specification of the input process; this includes
rules describing the input structure, code to be invoked when these rules are
recognized, and a low-level routine to do the basic input. Yacc then generates a
function to control the input process. This function, called a parser, calls the user-
supplied low-level input routine (the lexical analyzer) to pick up the basic items
(called tokens) from the input stream. These tokens are organized according to the
input structure rules, called grammar rules; when one of these rules has been
recognized, then user code supplied for this rule, an action, is invoked; actions
have the ability to return values and make use of the values of other actions.

Yacc is written in a portable dialect of C[1] and the actions, and output subroutine,
are in C as well. Moreover, many of the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule
describes an allowable structure and gives it a name. For example, one grammar
rule might be

 date : month_name day ',' year ;
Here, date, month_name, day, and year represent structures of interest in the input
process; presumably, month_name, day, and year are defined elsewhere. The
comma ``,'' is enclosed in single quotes; this implies that the comma is to appear
literally in the input. The colon and semicolon merely serve as punctuation in the
rule, and have no significance in controlling the input. Thus, with proper
definitions, the input
 July 4, 1776
might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This
user routine reads the input stream, recognizing the lower level structures, and
communicates these tokens to the parser. For historical reasons, a structure
recognized by the lexical analyzer is called a terminal symbol, while the structure
recognized by the parser is called a nonterminal symbol. To avoid confusion,
terminal symbols will usually be referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using the
lexical analyzer or grammar rules. For example, the rules

 month_name : 'J' 'a' 'n' ;
 month_name : 'F' 'e' 'b' ;

 . . .

 month_name : 'D' 'e' 'c' ;
might be used in the above example. The lexical analyzer would only need to
recognize individual letters, and month_name would be a nonterminal symbol.
Such low-level rules tend to waste time and space, and may complicate the
specification beyond Yacc's ability to deal with it. Usually, the lexical analyzer
would recognize the month names, and return an indication that a month_name
was seen; in this case, month_name would be a token.

Literal characters such as ``,'' must also be passed through the lexical analyzer, and
are also considered tokens.

Specification files are very flexible. It is realively easy to add to the above example
the rule

 date : month '/' day '/' year ;
allowing
 7 / 4 / 1776
as a synonym for
 July 4, 1776
In most cases, this new rule could be ``slipped in'' to a working system with
minimal effort, and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are
detected as early as is theoretically possible with a left-to-right scan; thus, not only
is the chance of reading and computing with bad input data substantially reduced,
but the bad data can usually be quickly found. Error handling, provided as part of
the input specifications, permits the reentry of bad data, or the continuation of the
input process after skipping over the bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications.
For example, the specifications may be self contradictory, or they may require a
more powerful recognition mechanism than that available to Yacc. The former
cases represent design errors; the latter cases can often be corrected by making the
lexical analyzer more powerful, or by rewriting some of the grammar rules. While

Yacc cannot handle all possible specifications, its power compares favorably with
similar systems; moreover, the constructions which are difficult for Yacc to

handle are also frequently difficult for human beings to handle. Some users have
reported that the discipline of formulating valid Yacc specifications for their input
revealed errors of conception or design early in the program development.

The theory underlying Yacc has been described elsewhere.[2, 3, 4] Yacc has been
extensively used in numerous practical applications, including lint,[5] the Portable
C Compiler,[6] and a system for typesetting mathematics.[7]

The next several sections describe the basic process of preparing a Yacc
specification; Section 1 describes the preparation of grammar rules, Section 2 the
preparation of the user supplied actions associated with these rules, and Section 3
the preparation of lexical analyzers. Section 4 describes the operation of the parser.
Section 5 discusses various reasons why Yacc may be unable to produce a parser
from a specification, and what to do about it. Section 6 describes a simple
mechanism for handling operator precedences in arithmetic expressions. Section 7
discusses error detection and recovery. Section 8 discusses the operating
environment and special features of the parsers Yacc produces. Section 9 gives
some suggestions which should improve the style and efficiency of the
specifications. Section 10 discusses some advanced topics, and Section 11 gives
acknowledgements. Appendix A has a brief example, and Appendix B gives a
summary of the Yacc input syntax. Appendix C gives an example using some of
the more advanced features of Yacc, and, finally, Appendix D describes
mechanisms and syntax no longer actively supported, but provided for historical
continuity with older versions of Yacc.

2: Basic Specifications

Names refer to either tokens or nonterminal symbols. Yacc requires token names to
be declared as such. In addition, for reasons discussed in Section 3, it is often
desirable to include the lexical analyzer as part of the specification file; it may be
useful to include other programs as well. Thus, every specification file consists of
three sections: the declarations, (grammar) rules, and programs. The sections are
separated by double percent ``%%'' marks. (The percent ``%'' is generally used in
Yacc specifications as an escape character.)

In other words, a full specification file looks like

 declarations
 %%
 rules
 %%
 programs
The declaration section may be empty. Moreover, if the programs section is
omitted, the second %% mark may be omitted also;

thus, the smallest legal Yacc specification is

 %%
 rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or
multi-character reserved symbols. Comments may appear wherever a name is
legal; they are enclosed in /* . . . */, as in C and PL/I.

The rules section is made up of one or more grammar rules. A grammar rule has
the form:

 A : BODY ;
A represents a nonterminal name, and BODY represents a sequence of zero or
more names and literals. The colon and the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot ``.'',
underscore ``_'', and non-initial digits. Upper and lower case letters are distinct.
The names used in the body of a grammar rule may represent tokens or
nonterminal symbols.

A literal consists of a character enclosed in single quotes ``'''. As in C, the
backslash ``\'' is an escape character within literals, and all the C escapes are
recognized. Thus

 '\n' newline
 '\r' return
 '\'' single quote ``'''
 '\\' backslash ``\''
 '\t' tab
 '\b' backspace

 '\f' form feed
 '\xxx' ``xxx'' in octal
For a number of technical reasons, the NUL character ('\0' or 0) should never be
used in grammar rules.

If there are several grammar rules with the same left hand side, the vertical bar ``|''
can be used to avoid rewriting the left hand side. In addition, the semicolon at the
end of a rule can be dropped before a vertical bar. Thus the grammar rules

 A : B C D ;
 A : E F ;
 A : G ;
can be given to Yacc as
 A : B C D
 | E F
 | G
 ;
It is not necessary that all grammar rules with the same left side appear together in
the grammar rules section, although it makes the input much more readable, and
easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the
obvious way:

 empty : ;

Names representing tokens must be declared; this is most simply done by writing

 %token name1 name2 . . .
in the declarations section. (See Sections 3 , 5, and 6 for much more discussion).
Every name not defined in the declarations section is assumed to represent a
nonterminal symbol. Every nonterminal symbol must appear on the left side of at
least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular
importance. The parser is designed to recognize the start symbol; thus, this symbol
represents the largest, most general structure described by the grammar rules. By
default, the start symbol is taken to be the left hand side of the first grammar rule
in the rules section. It is possible, and in fact desirable, to declare the start symbol
explicitly in the declarations section using the %start keyword:

 %start symbol

The end of the input to the parser is signaled by a special token, called the
endmarker. If the tokens up to, but not including, the endmarker form a structure
which matches the start symbol, the parser function returns to its caller after the
endmarker is seen; it accepts the input. If the endmarker is seen in any other
context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when
appropriate; see section 3, below. Usually the endmarker represents some
reasonably obvious I/O status, such as ``end-of-file'' or ``end-of-record''.

3: Actions

With each grammar rule, the user may associate actions to be

performed each time the rule is recognized in the input process. These actions may
return values, and may obtain the values returned by previous actions. Moreover,
the lexical analyzer can return values for tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call
subprograms, and alter external vectors and variables. An action is specified by
one or more statements, enclosed in curly braces ``{'' and ``}''. For example,

 A : '(' B ')'
 { hello(1, "abc"); }
and
 XXX : YYY ZZZ
 { printf("a message\n");
 flag = 25; }
are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action
statements are altered slightly. The symbol ``dollar sign'' ``$'' is used as a signal to
Yacc in this context.

To return a value, the action normally sets the pseudovariable ``$$'' to some value.
For example, an action that does nothing but return the value 1 is

 { $$ = 1; }

To obtain the values returned by previous actions and the lexical analyzer, the
action may use the pseudo-variables $1, $2, . . ., which refer to the values returned
by the components of the right side of a rule, reading from left to right. Thus, if the
rule is

 A : B C D ;
for example, then $2 has the value returned by C, and $3 the value returned by D.

As a more concrete example, consider the rule

 expr : '(' expr ')' ;
The value returned by this rule is usually the value of the expr in parentheses. This
can be indicated by
 expr : '(' expr ')' { $$ = $2 ; }

By default, the value of a rule is the value of the first element in it ($1). Thus,
grammar rules of the form

 A : B ;
frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes, it
is desirable to get control before a rule is fully parsed. Yacc permits an action to be
written in the middle of a rule as well as at the end. This rule is assumed to return a
value, accessible through the usual mechanism by the actions to the right of it. In
turn, it may access the values returned by the symbols to its left. Thus, in the rule

 A : B
 { $$ = 1; }
 C
 { x = $2; y = $3; }
 ;
the effect is to set x to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by Yacc by manufacturing
a new nonterminal symbol name, and a new rule matching this name to the empty
string. The interior action is the action triggered off by recognizing this added rule.
Yacc actually treats the above example as if it had been written:

 $ACT : /* empty */
 { $$ = 1; }

 ;

 A : B $ACT C
 { x = $2; y = $3; }
 ;

In many applications, output is not done directly by the actions; rather, a data
structure, such as a parse tree, is constructed in memory, and transformations are
applied to it before output is generated. Parse trees are particularly easy to
construct, given routines to build and maintain the tree structure desired. For
example, suppose there is a C function node, written so that the call

 node(L, n1, n2)
creates a node with label L, and descendants n1 and n2, and returns the index of
the newly created node. Then parse tree can be built by supplying actions such as:
 expr : expr '+' expr
 { $$ = node('+', $1, $3); }
in the specification.

The user may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section, enclosed in the marks ``%{'' and
``%}''. These declarations and definitions have global scope, so they are known to
the action statements and the lexical analyzer. For example,

 %{ int variable = 0; %}
could be placed in the declarations section, making variable accessible to all of the
actions. The Yacc parser uses only names beginning in ``yy''; the user should avoid
such names.

In these examples, all the values are integers: a discussion of values of other types
will be found in Section 10.

4: Lexical Analysis

The user must supply a lexical analyzer to read the input stream and communicate
tokens (with values, if desired) to the parser. The lexical analyzer is an integer-
valued function called yylex. The function returns an integer, the token number,
representing the kind of token read. If there is a value associated with that token, it
should be assigned to the external variable yylval.

The parser and the lexical analyzer must agree on these token numbers in order for
communication between them to take place. The numbers may be chosen by Yacc,
or chosen by the user. In either case, the ``# define'' mechanism of C is used to
allow the lexical analyzer to return these numbers symbolically. For example,
suppose that the token name DIGIT has been defined in the declarations section of
the Yacc specification file. The relevant portion of the lexical analyzer might look
like:

 yylex(){
 extern int yylval;
 int c;
 . . .
 c = getchar();
 . . .
 switch(c) {
 . . .
 case '0':
 case '1':
 . . .
 case '9':
 yylval = c-'0';
 return(DIGIT);
 . . .
 }
 . . .

The intent is to return a token number of DIGIT, and a value equal to the numerical
value of the digit. Provided that the lexical analyzer code is placed in the programs
section of the specification file, the identifier DIGIT will be defined as the token
number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is
the need to avoid using any token names in the grammar that are reserved or
significant in C or the parser; for example, the use of token names if or while will
almost certainly cause severe difficulties when the lexical analyzer is compiled.
The token name error is reserved for error handling, and should not be used naively
(see Section 7).

As mentioned above, the token numbers may be chosen by Yacc or by the user. In
the default situation, the numbers are chosen by Yacc. The default token number

for a literal character is the numerical value of the character in the local character
set. Other names are assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of the
token name or literal in the declarations section can be immediately followed by a
nonnegative integer. This integer is taken to be the token number of the name or
literal. Names and literals not defined by this mechanism retain their default
definition. It is important that all token numbers be distinct.

For historical reasons, the endmarker must have token number 0 or negative. This
token number cannot be redefined by the user; thus, all lexical analyzers should be
prepared to return 0 or negative as a token number upon reaching the end of their
input.

A very useful tool for constructing lexical analyzers is the Lex program developed
by Mike Lesk.[8] These lexical analyzers are designed to work in close harmony
with Yacc parsers. The specifications for these lexical analyzers use regular
expressions instead of grammar rules. Lex can be easily used to produce quite
complicated lexical analyzers, but there remain some languages (such as
FORTRAN) which do not fit any theoretical framework, and whose lexical
analyzers must be crafted by hand.

5: How the Parser Works

Yacc turns the specification file into a C program, which parses the input
according to the specification given. The algorithm used to go from the
specification to the parser is complex, and will not be discussed here (see the
references for more information). The parser itself, however, is relatively simple,
and understanding how it works, while not strictly necessary, will nevertheless
make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The
parser is also capable of reading and remembering the next input token (called the
lookahead token). The current state is always the one on the top of the stack. The
states of the finite state machine are given small integer labels; initially, the
machine is in state 0, the stack contains only state 0, and no lookahead token has
been read.

The machine has only four actions available to it, called shift, reduce, accept, and
error. A move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead token
to decide what action should be done; if it needs one, and does not have one, it
calls yylex to obtain the next token.

2. Using the current state, and the lookahead token if needed, the parser decides on
its next action, and carries it out. This may result in states being pushed onto the
stack, or popped off of the stack, and in the lookahead token being processed or
left alone.

The shift action is the most common action the parser takes. Whenever a shift
action is taken, there is always a lookahead token. For example, in state 56 there
may be an action:

 IF shift 34
which says, in state 56, if the lookahead token is IF, the current state (56) is pushed
down on the stack, and state 34 becomes the current state (on the top of the stack).
The lookahead token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions
are appropriate when the parser has seen the right hand side of a grammar rule, and
is prepared to announce that it has seen an instance of the rule, replacing the right
hand side by the left hand side. It may be necessary to consult the lookahead token
to decide whether to reduce, but usually it is not; in fact, the default action
(represented by a ``.'') is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules are
also given small integer numbers, leading to some confusion. The action

 . reduce 18
refers to grammar rule 18, while the action
 IF shift 34
refers to state 34.

Suppose the rule being reduced is

A : x y z ;

The reduce action depends on the left hand symbol (A in this case), and the
number of symbols on the right hand side (three in this case). To reduce, first pop
off the top three states from the stack (In general, the number of states popped
equals the number of symbols on the right side of the rule). In effect, these states

were the ones put on the stack while recognizing x, y, and z, and no longer serve
any useful purpose. After popping these states, a state is uncovered which was the
state the parser was in before beginning to process the rule. Using this uncovered
state, and the symbol on the left side of the rule, perform what is in effect a shift of
A. A new state is obtained, pushed onto the stack, and parsing continues. There are
significant differences between the processing of the left hand symbol and an
ordinary shift of a token, however, so this action is called a goto action. In
particular, the lookahead token is cleared by a shift, and is not affected by a goto.
In any case, the uncovered state contains an entry such as:

 A goto 20
causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action ``turns back the clock'' in the parse, popping the states
off the stack to go back to the state where the right hand side of the rule was first
seen. The parser then behaves as if it had seen the left side at that time. If the right
hand side of the rule is empty, no states are popped off of the stack: the uncovered
state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and
values. When a rule is reduced, the code supplied with the rule is executed before
the stack is adjusted. In addition to the stack holding the states, another stack,
running in parallel with it, holds the values returned from the lexical analyzer and
the actions. When a shift takes place, the external variable yylval is copied onto the
value stack. After the return from the user code, the reduction is carried out. When
the goto action is done, the external variable yyval is copied onto the value stack.
The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action
indicates that the entire input has been seen and that it matches the specification.
This action appears only when the lookahead token is the endmarker, and indicates
that the parser has successfully done its job. The error action, on the other hand,
represents a place where the parser can no longer continue parsing according to the
specification. The input

tokens it has seen, together with the lookahead token, cannot be followed by
anything that would result in a legal input. The parser reports an error, and
attempts to recover the situation and resume parsing: the error recovery (as
opposed to the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification

 %token DING DONG DELL
 %%
 rhyme : sound place
 ;
 sound : DING DONG
 ;
 place : DELL
 ;

When Yacc is invoked with the -v option, a file called y.output is produced, with a
human-readable description of the parser. The y.output file corresponding to the
above grammar (with some statistics stripped off the end) is:

 state 0
 $accept : _rhyme $end

 DING shift 3
 . error

 rhyme goto 1
 sound goto 2

 state 1
 $accept : rhyme_$end

 $end accept
 . error

 state 2
 rhyme : sound_place

 DELL shift 5
 . error

 place goto 4

 state 3
 sound : DING_DONG

 DONG shift 6
 . error

 state 4
 rhyme : sound place_ (1)

 . reduce 1

 state 5
 place : DELL_ (3)

 . reduce 3

 state 6
 sound : DING DONG_ (2)

 . reduce 2
Notice that, in addition to the actions for each state, there is a description of the
parsing rules being processed in each state. The _ character is used to indicate what
has been seen, and what is yet to come, in each rule. Suppose the input is
 DING DONG DELL
It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state 0. The parser needs to refer to the input in order
to decide between the actions available in state 0, so the first token, DING, is read,
becoming the lookahead token. The action in state 0 on DING is is ``shift 3'', so
state 3 is pushed onto the stack, and the lookahead token is cleared. State 3
becomes the current state. The next token, DONG, is read, becoming the
lookahead token. The action in state 3 on the token DONG is ``shift 6'', so state 6 is
pushed onto the stack, and the lookahead is cleared. The stack now contains 0, 3,
and 6. In state 6, without even consulting the lookahead, the parser reduces by rule
2.

 sound : DING DONG
This rule has two symbols on the right hand side, so two states, 6 and 3, are popped
off of the stack, uncovering state 0. Consulting the description of state 0, looking
for a goto on sound,
 sound goto 2
is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is ``shift 5'', so state 5 is
pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead token is
cleared. In state 5, the only action is to reduce by rule 3. This has one symbol on
the right hand side, so one state, 5, is popped off, and state 2 is uncovered. The
goto in state 2 on place, the left side of rule 3, is state 4. Now, the stack contains 0,
2, and 4. In state 4, the only action is to reduce by rule 1. There are two symbols on
the right, so the top two states are popped off, uncovering state 0 again. In state 0,
there is a goto on rhyme causing the parser to enter state 1. In state 1, the input is
read; the endmarker is obtained, indicated by ``$end'' in the y.output file. The
action in state 1 when the endmarker is seen is to accept, successfully ending the
parse.

The reader is urged to consider how the parser works when confronted with such
incorrect strings as DING DONG DONG, DING DONG, DING DONG DELL
DELL, etc. A few minutes spend with this and other simple examples will
probably be repaid when problems arise in more complicated contexts.

PROGRAM:-2

ALGORITHM TO CONVERT REGULAR EXPRESSION TO NFA

Input: A regular expression R over alphabet Σ.

Output: A NFA n accepting the language denoted by R

Method: We first decompose R into the primitive components. For each
component we construct a finite automaton as follows.

1. For ε we construct the NFA

 i ε f

2. For a in Σ we construct the NFA

 a
 i f

3. Having constructed components for the basic regular expressions, we proceed to
 combine them in ways that correspond to the way compounded regular
expressions are
 formed from small regular expressions.

 For regular expression R1/R2 we construct the composite NFA

 N1 ε
 ε

 i f

 ε N2 ε

 For R1, R2 we construct the composite NFA

 i N1 N2 f

 For R1* we construct the composite NFA ε

 N

 i f
 ε

 where i is initial state and
 f is final state

ALGORITHM:-3

WAP TO FIND FIRST IN CONTEXT FREE GRAMMER

1. If X is a terminal, then FIRST(X) is X
FIRST(X)={X}

2. If X is a non-terminal where X->aα/ Є then add a to FIRST(X)
X->+T
FIRST(X)={+, Є }

3. If X is non-terminal and X->Y1,Y2,Y3,----,Yk is a production, then place a in
FIRST(X) if for some i, a is in FIRST(Yi), and Є is in all of FIRST(Y1)------
,FIRST(Yi); that is, Y1---Yi-1=> Є. If Є is in FIRST(Yj) for all j=1,2,---,k, then
add Є to FIRST(X).

 PROGRAM:-3

WAP TO FIND FIRST IN CONTEXT FREE GRAMMER

#include<stdio.h>
#include<conio.h>
#include<string.h>

void main()
{

 char t[5],nt[10],p[5][5],first[5][5],temp;
 int i,j,not,nont,k=0,f=0;
 clrscr();

 printf("\nEnter the no. of Non-terminals in the grammer:");
 scanf("%d",&nont);
 printf("\nEnter the Non-terminals in the grammer:\n");
 for(i=0;i<nont;i++)
 {
 scanf("\n%c",&nt[i]);
 }

 printf("\nEnter the no. of Terminals in the grammer: (Enter { for absiline)
");
 scanf("%d",¬);
 printf("\nEnter the Terminals in the grammer:\n");
 for(i=0;i<not||t[i]=='$';i++)
 {
 scanf("\n%c",&t[i]);
 }

 for(i=0;i<nont;i++)
 {
 p[i][0]=nt[i];
 first[i][0]=nt[i];
 }

 printf("\nEnter the productions :\n");
 for(i=0;i<nont;i++)
 {
 scanf("%c",&temp);
 printf("\nEnter the production for %c (End the production with '$'
sign) :",p[i][0]);
 for(j=0;p[i][j]!='$';)
 {
 j+=1;
 scanf("%c",&p[i][j]);
 }
 }

 for(i=0;i<nont;i++)
 {
 printf("\nThe production for %c -> ",p[i][0]);
 for(j=1;p[i][j]!='$';j++)
 {
 printf("%c",p[i][j]);
 }
 }

 for(i=0;i<nont;i++)
 {
 f=0;
 for(j=1;p[i][j]!='$';j++)
 {
 for(k=0;k<not;k++)
 {
 if(f==1)
 break;

 if(p[i][j]==t[k])
 {
` first[i][j]=t[k];
 first[i][j+1]='$';
 f=1;
 break;
 }

 else if(p[i][j]==nt[k])
 {
 first[i][j]=first[k][j];
 if(first[i][j]=='{')
 continue;
 first[i][j+1]='$';
 f=1;
 break;
 }
 }
 }
 }

 for(i=0;i<nont;i++)
 {
 printf("\n\nThe first of %c -> ",first[i][0]);
 for(j=1;first[i][j]!='$';j++)
 {
 printf("%c\t",first[i][j]);
 }
 }

getch();
}

Output

Enter the no. of Non-terminals in the grammer:3

Enter the Non-terminals in the grammer:
E
T
V

Enter the no. of Terminals in the grammer: (Enter { for absiline) 5

Enter the Terminals in the grammer:
+
*
(
)
i

Enter the productions :

Enter the production for E (End the production with '$' sign) :(i)$

Enter the production for T (End the production with '$' sign) :i*E$

Enter the production for V (End the production with '$' sign) :E+i$

The production for E -> (i)
The production for T -> i*E
The production for V -> E+i

The first of E -> (

The first of T -> i

The first of V -> (

ALGORITHM:-4

ALGORITHM TO FIND WHETHER GIVEN STRING IS KEYWORD OR
NOT

1. Start

2. Declare i, flag as int and str[10] as char

3. Declare array a[5][10]={“printf”,”scanf”,”if”,”else”,”break”}

4. Allow user to enter the string

5. Initialize the loop i=0 to i<strlen(str)

a. Compare str and a[i]

b. If same, assign flag=1 else flag=0

6. If flag=1, print Keyword else print String

7. Stop

PROGRAM NO:-4

PROGRAM TO FIND WHETHER GIVEN STRING IS KEYWORD OR
NOT

#include<stdio.h>
#include<conio.h>
#include<string.h>

void main()
{
 char a[5][10]={"printf","scanf","if","else","break"};
 char str[10];
 int i,flag;

 clrscr();

 puts("Enter the string :: ");
 gets(str);

 for(i=0;i<strlen(str);i++)
 {
 if(strcmp(str,a[i])==0)
 {
 flag=1;
 break;
 }
 else
 flag=0;
 }

 if(flag==1)

 puts("Keyword");
 else
 puts("String");

 getch();
}

Output

Enter the string ::
printf
Keyword

Enter the string ::
vikas
String

ALGORITHM:-5

ALGORITHM TO FIND WHETHER GIVEN STRING IS IDENTIFIER OR
NOT

1. Start

2. Declare i,j,flag=1,len as int and str[10] as char

3. Allow the user to enter the string

4. Initialize the loop i=0,j=1 to i<len

b. if str[j] is digit, assign flag=0

c. else if str[i] is alphabet, increment flag

1) if str[i] is alphanum, increment flag

2) else if str[i] is not digit, assign flag=0

3) else increment flag

d. else if str[i] is not alphanum, assign flag=0

5. if flag==0, print Identifier else print Not Identifier

6. Stop

PROGRAM NO:-5

PROGRAM TO FIND WHETHER GIVEN STRING IS IDENTIFIER OR
NOT

#include<stdio.h>
#include<conio.h>
#include<string.h>
#include<ctype.h>
#include<stdlib.h>

void main()
{
 int i,j,flag=1,len;
 char str[10];

 clrscr();

 puts("Enter the string :: ");
 gets(str);

 len=strlen(str);

 for(i=0,j=1;i<len;i++)
 {
 if(isdigit(str[j]))
 {
 flag=0;
 break;
 }

 else if(isalpha(str[i]))
 {
 {
 flag++;
 continue;
 }

 if(isalnum(str[i]))
 {
 flag++;
 continue;
 }
 else if(!isdigit(str[i]))
 {
 flag=0;
 break;
 }
 else
 flag++;
 }
else if(!isalnum(str[i]))
 {
 flag=0;
 break;
 }

 }

 if(flag==0)
 puts("Not Identifier");
 else
 puts("Identifier");

 getch();
}

Output

Enter the string ::
printf
Identifier

Enter the string ::
123scanf
Not Identifier

Enter the string ::
printf_scanf
Not Identifier

ALGORITHM:-6

ALGORITHM TO FIND WHETHER GIVEN STRING IS CONSTANT OR
NOT

1. Start

2. Declare i, flag as int and a[5] as char

3. Allow user to enter the value

4. Initialize the loop from i=0 to i<strlen(a)

 a. if a[i] is digit, assign flag=1

 b. else assign flag=0

5. if flag==1, print Value is Constant else print Value is Variable

6. Stop

PROGRAM:-6

PROGRAM TO FIND WHETHER GIVEN STRING IS CONSTANT OR

NOT

#include<stdio.h>
#include<conio.h>
#include<string.h>
#include<ctype.h>

void main()
{
 int i,flag;
 char a[5];

 clrscr();

 puts("Enter the value :: ");
 gets(a);

 for(i=0;i<strlen(a);i++)
 {
 if(isdigit(a[i]))
 flag=1;

 else
 {
 flag=0;
 break;
 }
 }

 if(flag==1)
 puts("Value is constant");
 else
 puts("Value is a variable");

 getch();
}

Output

Enter the value ::
123
Value is constant

Enter the value ::
vikas
Value is a variable

ALGORITHM:-7

PROGRAM TO COUNT BLANK SPACE AND COUNT THE NO. OF
LINES

1. Start

2. Declare flag=1 as int and I,j=0,temp[100] as char.

3. Allow the user to enter the sentence

4. Read the sentence until it is not empty

b. if i==’ ‘, replace i with ;

c. else if i==’\t’, replace i with “,

d. else if i==’\n’, increment the value of flag

5. Assign temp[j++]=i and temp[j]=NULL

6. Print the value of temp for removing blanks

7. Print the value of flag for counting the no. of lines

8. Stop

PROGRAM:-7

PROGRAM TO COUNT BLANK SPACE AND COUNT THE NO. OF
LINES

#include<stdio.h>
#include<conio.h>
#include<string.h>

void main()
{
 int flag=1;
 char i,j=0,temp[100];

 clrscr();

 printf("Enter the Sentence (add '$' at the end) :: \n\n");

 while((i=getchar())!='$')
 {
 if(i==' ')
 i=';';
 else if(i=='\t')
 i='"';
 else if(i=='\n')
 flag++;

 temp[j++]=i;
 }

 temp[j]=NULL;
 printf("\n\n\nAltered Sentence :: \n\n");
 puts(temp);

 printf("\n\nNo. of lines = %d",flag);

 getch();
}

Output

Enter the Sentence (add '$' at the end) ::

vikas kapoor
hello world
welcome$

Altered Sentence ::

vikas;kapoor
hello"world
welcome

No. of lines = 3

ALGORITHM:-8

ALGORITHM TO GENERATE TOKENS FOR THE GIVEN GRAMMER

1. Start

2. Declare i as int, str[20] as char

3. Allow user to enter the string

4. Initialize the loop until str[i] is not equal to NULL

a. if str[i]==’(‘ || str[i]==’{‘, print 4

b. if str[i]==’)’ || str[i]==’}‘, print 5

c. if str[i] is digit, increment i and print 1

d. if str[i]==’+’, print 2

e. if str[i]==’*’, print 3

5. Stop

PROGRAM:-8

PROGRAM TO GENERATE TOKENS FOR THE GIVEN GRAMMER

#include<stdio.h>
#include<conio.h>
#include<ctype.h>
#include<string.h>

void main()
{
 int i=0;
 char str[20];
 clrscr();
 printf(" \n Input the string ::");
 gets(str);
 printf("Corresponding Tokens are :: ");
 while(str[i]!='\0')
 {
 if((str[i]=='(')||(str[i]=='{'))
 {
 printf("4");
 }

 if((str[i]==')')||(str[i]=='}'))
 {
 printf("5");
 }

 if(isdigit(str[i]))
 {
 while(isdigit(str[i]))
 {
 i++;
 }
 i--;
 printf("1");

 }

 if(str[i]=='+')
 {
 printf("2");
 }

 if(str[i]=='*')
 {
 printf("3");
 }

 i++;
 }

 getch();
}

Output

Input the string :: (12+23*34)
Corresponding Tokens are :: 4121315

PROGRAM:-9

AN ALGO TO CONVERT NFA TO DFA

Input: An NFA N.

Output: A DFA D accepting the same language

Method: Our algorithm constructs a transition table Dtran for D. Each DFA
state is a set of NFA states and we construct Dtran so that D will simulate “in
parallel” all possible moves N can make on a given input string
 Before it sees the first input symbol, N can be in any of the states in the set
€-closure(s0), where s0 is the start state of N. Suppose that exactly the states in set
T are reachable from s0 on a given sequence of input symbols, and let a be the next
input symbol. On seeing a, N can move to any of the states in the set move(T,a).
When we allow for €-transitions, N can be in any of the states in €-
closure(move(T,a)), after seeing the a.

initially, €-closure(s0) is the only state in Dstates and it is unmarked.
while there is a n unmarked state T in Dstates do begin
 mark T;
 for each input symbol a do begin
 U:= €-closure(move(T,a));
 if U is not in Dstates then
 add U as unmarked state in Dstates
 Dtran[T,a]:=U
 end
end

The Subset Construction

We construct Dstates, the set of states of D, and Dtran, the transition table for D, in
the following manner. Each state of D corresponds to a set of NFA states that N
could be in after reading some sequence of input symbols including all possible €-
transitions before or after symbols are read. The start state of D is €-closure(s0).
States and transitions are added to D using algorithm of Subset Constructions. A

state of D is an accepting state if it is a set of NFA states containing at least one
accepting state of N.

push all states in T onto stack;
initialize €-closure(T) to T;
while stack is not empty do begin
 pop t, the top element, off of stack;
 for each state u with an edge from t to u labeled € do
 if u is not in €-closure(T) do begin
 add u to €-closure(T);
 push u onto stack;
 end
end

Computation of €-closure

The computation of €-closure(T) is a typical process of searching a graph for
nodes reachable from a given set of nodes. In this case the states of T are the given
set of nodes, and the graph consists of just the €-labeled edges of the NFA. A
simple algorithm to compute €-closure(T) uses a stack to hold states whose edges
have not been checked for €-labeled transitions. Such a procedure is shown in
Computation of €-closure

PROGRAM:-10

MINIMIZATION THE NUMBER OF STATES OF A DFA

Input: A DFA M with set of states S, set of inputs ∑, transitions defined for
all states and inputs, start state s0, and set of accepting states F.

Output: A DFA M’ accepting the same language as M and having as few
states as possible.

Method:

1. Construct as initial partition ∏ of set of states with two groups: the accepting
states F and the non accepting states S-F

2. Apply the procedure to ∏ to construct a new partition ∏new.
3. If ∏new = ∏, let ∏final = ∏ and continue with step (4). Otherwise, repeat

step (2) with ∏ = ∏new.
4. Choose one state in each group of the partition ∏final as the representative

for that group. The representatives will be the states of the reduced DFA M’.
Let s be a representative state, and suppose on input a there is a transition of
M from s to t. let r be the representative of t’s group. Then M’ has a
transition from s to r on a. Let the start state of M’ be the representative of
the group containing the start state s0 of M, and let the accepting states f M’
be the representatives that are in F. Note that each group of ∏final either
consists only of states in F or has no states in F.

5. If M’ has a dead state, that is, a state d that is not accepting and that has
transitions to itself on all input symbols, then remove d from M’. Also
remove any states not reachable from the start state. Any transitions to d
from other states become undefined.

for each group G of ∏ do begin
 partition G into subgroups such that two states s and t
 of G are in the same subgroup if and only if for all
 input symbols a, states s and t have transitions on a
 to states in the same group of ∏;
 replace G in ∏new by the set of all subgroups formed
end

Construction of ∏new

ALGORITHM=11

WAP To CHECK IF STRING IS IN GRAMMER OR NOT.

1. Start.
 2. Declare the character array str[], token, and initialize integer variables a=0,
b=0,c,d.
 3. Input the string from user.
 4. Repeat step 5 to 12 till str[a]='10'.
 5. If str[a]=='(' orstr[a]=='{' then token[b]='4',b++.
 6. If str[a]==')'or str[a]=='}' then token[b]='5',b++
 7. Check if isdigit(str[a]) then repeat step 8 till isdigit(str[a])
 8. a++.
 9. a--, token[b]='1', b++.
10. If (str[a]=='+') then token[b]='2',b++.
11. If (str[a]=='*') then token[b]='3',b++.
12. a==.
13. token[b]='\0'.
14. Then print the token genarated for string.
15. b=0.
16. Repeat step 17 to 18 till token[b='\0'.
17. If token[b]=='1' then token[b]=='6'.
18. b++
19. Print the token.
20. b=0
21. Repeat step 22 to 31 till token[b]='\0'.
22. c=0.
23. Repeat step 24 to 36 til token[b]=='6'.
24. token[c]='6'.
25. c++
26. Repeat step 27 to 28 till token[c]='0'.
27. token[c]==token[c+2].
28. c++
29. Token[c-2]='\0'.
30. put token.
31. b++
32. Compare token with 6 and result store in d.
33. If d=0, then put the string in the grammer.
34. Else print string is not in the string .

35. Stop.

PROGRAM=11

WAP To CHECK IF STRING IS IN GRAMMER OR NOT.

#include<stdio.h>
#include<conio.h>
#include<ctype.h>
#include<string.h>
void main()
{
int a=0,b=0,c;
char str[20],tok[11];
clrscr();
printf(“input the expression=”);
gets(str);
while(str[a]!=’\0’)
{
if((str[a]==’)’)||str[a]==’{‘))
{
tok[b]=’4’;
b++;
}
if((str[a]==’)’)|str[a]==’}‘))
{
tok[b]=’5’;
b++;
}
if(isdigit(str[a]))
{
while(isdigit(str[a]))
{

a++;
}
a--;
tok[b]=’0’;
b++;
}
if(str[a]==’+’)
{
tok[b]=’2’;
b++;
}
if(str[a]==’*’)
{
tok[b]=’3’;
b++;
}
a++;
}
tok[b]=’\0’;
puts()tok);
b=0;
while(tok[b]!=’\0’)
{
if(((tok[b]==’6’)&&(tok[b+1]==’2’)&&(tok[b+2]==’6’))||((tok[b]==’6’)&&(tok[b
+1]==’3’)&&(tok[b+2]==’6’))||
((tok[b]==’4’)&&(tok[b+1]==’6’)&&(tok[b+2]==’5’)))
{
tok[b]=’6’;
c=b+1;
while(tok[c]!=’\0’)
{
tok[c]=tok[c+2];
c++;
}
tok[c]=’\0’;
puts(tok);
b=0;
}
else

{
b++;
puts(tok);
}
}
int d;
d=strcmp(tok,”6”);
if(d==0)
{
printf(“it is in grammer”):
}
else
{
printf(“it is not in grammer”);
}
getch();
}

OUTPUT

Input the expression=(23+)
4625
4625
4625
4625
4625
It is not in grammer.

Input the expression=(2+(3+4)+5)
46246265265
46246265265
46246265265
46246265265
46246265265
462462652
462462652
462462652
462462652
462462652
462462
462462
462462
462462
462462
462
462
462
462
462
6
6

6
6
6

ALGORITHM:-12

WAP TO CALCULATE LEADING OF ALL THE NON TERMINALS IN
GIVEN GRAMMER.

procedure INSTALL(A,a);
if not L(A,a) then
 begin
 L[A,a]:= true;
 push (A,a) onto STACK
 end

The main procedure is given below:

begin
 for each nonterminal A and terminal a do L(A,a):= false;
 for each production of the form A->a or A->B do
 INSTALL(A,a);
 while STACK not empty do
 begin
 pop top pair (B,a) from STACK;
 for each production of the form A->B do
 INSTALL(A,a)
 end
end

 PROGRAM:-12

WAP TO CALCULATE LEADING OF ALL THE NON TERMINALS IN

GIVEN GRAMMER.

#include<conio.h>
#include<stdio.h>

char arr[18][3] =
 {
 {'E','+','F'},{'E','*','F'},{'E','(','F'},{'E',')','F'},{'E','i','F'},{'E','$','F'},
 {'F','+','F'},{'F','*','F'},{'F','(','F'},{'F',')','F'},{'F','i','F'},{'F','$','F'},
 {'T','+','F'},{'T','*','F'},{'T','(','F'},{'T',')','F'},{'T','i','F'},{'T','$','F'},
 };
char prod[6] = "EETTFF";
char res[6][3]=
 {
 {'E','+','T'},{'T','\0'},
 {'T','*','F'},{'F','\0'},
 {'(','E',')'},{'i','\0'},
 };
char stack [5][2];
int top = -1;

void install(char pro,char re)
{
 int i;
 for(i=0;i<18;++i)
 {
 if(arr[i][0]==pro && arr[i][1]==re)
 {
 arr[i][2] = 'T';
 break;
 }
 }
 ++top;
 stack[top][0]=pro;
 stack[top][1]=re;
}

void main()
{
 int i=0,j;
 char pro,re,pri=' ';

 clrscr();
 for(i=0;i<6;++i)
 {
 for(j=0;j<3 && res[i][j]!='\0';++j)
 {

 if(res[i][j]=='+'||res[i][j]=='*'||res[i][j]=='('||res[i][j]==')'||res[i][j]=='i'||res[i][j]
=='$')
 {
 install(prod[i],res[i][j]);
 break;
 }
 }
 }

 while(top>=0)
 {
 pro = stack[top][0];

 re = stack[top][1];
 --top;
 for(i=0;i<6;++i)
 {
 if(res[i][0]==pro && res[i][0]!=prod[i])
 {
 install(prod[i],re);
 }
 }
 }
 for(i=0;i<18;++i)
 {
 printf("\n\t");
 for(j=0;j<3;++j)
 printf("%c\t",arr[i][j]);
 }
 getch();
 clrscr();
 printf("\n\n");
 for(i=0;i<18;++i)
 {
 if(pri!=arr[i][0])
 {
 pri=arr[i][0];
 printf("\n\t%c -> ",pri);
 }
 if(arr[i][2] =='T')
 printf("%c ",arr[i][1]);
 }
 getch();
}

Output

 E + T
 E * T
 E (T
 E) F
 E i T
 E $ F
 F + F
 F * F
 F (T
 F) F
 F i T
 F $ F
 T + F
 T * T
 T (T
 T) F
 T i T
 T $ F

 E -> + * (i
 F -> (i
 T -> * (i

ALGORITHM:-13

WAP TO CALCULATE TRAILING OF ALL THE NON TERMINALS IN
GIVEN GRAMMER

begin
 for each non terminal A and terminal a do L(A,a):= false;
 for each production of the form A->αa or A->αaB do
 INSTALL(A,a);
 while STACK not empty do
 begin
 pop top pair (B,a) from STACK;
 for each production of the form A->αB do
 INSTALL(A,a)
 end
end

INSTALL

procedure INSTALL(A,a);
if not L(A,a) then
 begin
 L[A,a]:= true;
 push (A,a) onto STACK
 end

PROGRAM:-13

WAP TO CALCULATE TRAILING OF ALL THE NON TERMINALS IN
GIVEN GRAMMER

#include<conio.h>
#include<stdio.h>

char arr[18][3] =
 {
 {'E','+','F'},{'E','*','F'},{'E','(','F'},{'E',')','F'},{'E','i','F'},{'E','$','F'},
 {'F','+','F'},{'F','*','F'},{'F','(','F'},{'F',')','F'},{'F','i','F'},{'F','$','F'},
 {'T','+','F'},{'T','*','F'},{'T','(','F'},{'T',')','F'},{'T','i','F'},{'T','$','F'},
 };
char prod[6] = "EETTFF";
char res[6][3]=
 {
 {'E','+','T'},{'T','\0','\0'},
 {'T','*','F'},{'F','\0','\0'},
 {'(','E',')'},{'i','\0','\0'},
 };
char stack [5][2];
int top = -1;

void install(char pro,char re)
{
 int i;
 for(i=0;i<18;++i)
 {
 if(arr[i][0]==pro && arr[i][1]==re)
 {
 arr[i][2] = 'T';
 break;
 }
 }
 ++top;
 stack[top][0]=pro;
 stack[top][1]=re;
}

void main()
{
 int i=0,j;
 char pro,re,pri=' ';

 clrscr();
 for(i=0;i<6;++i)
 {
 for(j=2;j>=0;--j)
 {

 if(res[i][j]=='+'||res[i][j]=='*'||res[i][j]=='('||res[i][j]==')'||res[i][j]=='i'||res[i][j]
=='$')
 {
 install(prod[i],res[i][j]);
 break;
 }
 else if(res[i][j]=='E' || res[i][j]=='F' || res[i][j]=='T')
 {
 if(res[i][j-1]=='+'||res[i][j-1]=='*'||res[i][j-1]=='('||res[i][j-
1]==')'||res[i][j-1]=='i'||res[i][j-1]=='$')
 {
 install(prod[i],res[i][j-1]);
 break;
 }
 }
 }
 }

 while(top>=0)
 {
 pro = stack[top][0];
 re = stack[top][1];
 --top;
 for(i=0;i<6;++i)
 {

 for(j=2;j>=0;--j)
 {
 if(res[i][0]==pro && res[i][0]!=prod[i])
 {
 install(prod[i],re);
 break;
 }
 else if(res[i][0]!='\0')
 break;
 }
 }
 }
 for(i=0;i<18;++i)
 {
 printf("\n\t");
 for(j=0;j<3;++j)
 printf("%c\t",arr[i][j]);
 }
 getch();
 clrscr();
 printf("\n\n");
 for(i=0;i<18;++i)
 {
 if(pri!=arr[i][0])
 {
 pri=arr[i][0];
 printf("\n\t%c -> ",pri);
 }
 if(arr[i][2] =='T')
 printf("%c ",arr[i][1]);
 }
 getch();

}

Output

 E + T
 E * T
 E (F
 E) T
 E i T
 E $ F
 F + F
 F * F
 F (F
 F) T
 F i T
 F $ F
 T + F
 T * T
 T (F
 T) T
 T i T
 T $ F

 E -> + *) i
 F ->) i
 T -> *) i

