Section -D

Single and multiple INTEGRAL

Integral Calculus

* Applications of single integration to find volume of solids and surface area of solids of revolution.
* Double integral, change of order of integration
- Double integral in polar coordinates,
* Applications of double integral to find area enclosed by plane curves,
* Triple integral
* Change of variables, volume of solids,
* Dirichlet's integral.
* Beta and gamma functions and relationship between them

ApPLICATIONS OF SINGLE INTEGRATION

Volume Formulae for Cartesian Equations

Revolution About x-axis:- The Volume of a solid generated by the revolution about the x-axis of the area bounded by the curve $y=f(x)$, the x -axis and the ordinates $\mathrm{x}=\mathrm{a}, \mathrm{x}=\mathrm{b}$ is $\quad \int_{a}^{b} \pi y^{2} d x$

Revolution About y-axis:- The volume of the solid generated by the revolution about the y-axis of the area bounded by the curve $x=f(y)$, the x -axis and the ordinates $\mathrm{y}=\mathrm{a}, \mathrm{y}=\mathrm{b}$ is $\quad \int_{a}^{b} \pi x^{2} d y$

Revolution About Any axis:- The volume of the solid generated by the revolution about any axis $C D$ of the area bounded by the curve $A B$, the axis $C D$ and the perpendiculars $A C, B D$ on the axis, is
$\int_{O C}^{O D} \pi(P M)^{2} d(O M)$ where O is a fixed point on the axis CD and PM is Perpendicular from any point P of the curve AB on CD.

Volume Formulae for Parametric Equations

(i) The Volume of a solid generated by the revolution about the x-axis, of the area bounded by the curve $\mathrm{y}=\mathrm{f}(\mathrm{t}), \mathrm{y}=\varnothing(\mathrm{t})$, the x -axis and the ordinates, where $\mathrm{t}=\mathrm{a}, \mathrm{t}=\mathrm{b}$ is $\quad \int_{a}^{b} \pi y^{2} \frac{d x}{d t} d t$
(ii) The Volume of a solid generated by the revolution about the x-axis, of the area bounded by the curve $\mathrm{x}=\mathrm{f}(\mathrm{t}), \mathrm{y}=\varnothing(\mathrm{t})$, the y -axis and the abscissa at the points, where $\mathrm{t}=\mathrm{a}, \mathrm{t}=\mathrm{b}$ is $\quad \int_{a}^{b} \pi y^{2} \frac{d x}{d t} d t$

Volume Between two solids
The Volume of a solid generated by the revolution about the x-axis, of the area bounded by the curves $\mathrm{y}=\mathrm{f}(\mathrm{t}), \mathrm{y}=\varnothing(\mathrm{t})$, the x -axis and the ordinates, where $\mathrm{x}=\mathrm{a}, \mathrm{x}=\mathrm{b}$ is

$$
\int_{a}^{b} \pi\left(y_{1}^{2}-y_{2}^{2}\right) d x
$$

Where y_{1} is the ' y ' of the upper curve and y_{2} that the lower curve

The Volume Formulae for Polar

Curves

The volume of the solid generated by the revolution of the area bounded by the curve $\mathrm{r}=\mathrm{f}(\theta)$ and the radii vectors $\theta=\alpha, \theta=\beta$
(i) About the initial line $\mathrm{OX}(\theta=0)$ is $\int_{\beta}^{\alpha} \frac{2}{3} \pi r^{3} d \theta$
(ii) About the line $\mathrm{OY}\left(\theta=\frac{\pi}{2}\right)$ is $\int_{\beta}^{\alpha} \frac{2}{3} \pi r^{3} \cos \theta d \theta$

Three Practical Forms of the Surface Formula
(i) Surface Formula for Cartesian equations:- The Curved surface of the solid generated by the revolution about the x-axis of the area bounded by the curve $\mathrm{v}=\mathrm{f}(\mathrm{x})$, the x -axis and the ordinates $\mathrm{x}=\mathrm{a}, \mathrm{x}=\mathrm{b}$ is

$$
\int_{x=a}^{x=b} 2 \pi y \frac{d s}{d x} d x, \quad \text { where } \frac{d s}{d x}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}
$$

(i) Surface Formula for Parametric equations:- The Curved surface of the solid generated by the revolution about the x-axis, of the area bounded by the curve $\mathrm{x}=\mathrm{f}(\mathrm{t}), \mathrm{y}=\varnothing(\mathrm{t})$,the x -axis and the ordinates at the point $\mathrm{t}=\mathrm{a}, \mathrm{t}=\mathrm{b}$ is

$$
\int_{t=a}^{t=b} 2 \pi y \frac{d s}{d t} d t, \quad \text { where } \frac{d s}{d t}=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}}
$$

(ii) Surface Formula for Polar equations:- The Curved surface of the solid generated by the revolution about the initial line, of the area bounded by the curve $\mathrm{r}=\mathrm{f}(\theta)$ and the radii vector $\theta=\alpha, \theta=\beta$ is

$$
\begin{aligned}
\int_{\theta=\alpha}^{\theta=\beta} 2 \pi y \frac{d s}{d \theta} d \theta, & \text { where } \frac{d s}{d \theta} \\
& =\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}
\end{aligned} \quad \text { and } y=r \sin \theta
$$

Multiple
INTEGRAL

Double Integrals over RECTANGLES

1. Let $\mathrm{P}=\left\{\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ and $\mathrm{a}=\mathrm{x}_{0}<\mathrm{x}_{1}<\cdots<\mathrm{x}_{\mathrm{n}}=\mathrm{b}$ Then P is called a partition of $[a, b]$
2. Define $\Delta x_{i}=x_{i}-x_{i-1}, i=1,2, \ldots, n$
3. $|P|=\max \left\{\Delta x_{1}, \Delta x_{2}, \ldots, \Delta x_{n}\right\}$ The norm of P
4. Choose $\bar{x}_{i} \in\left[x_{i-1}, x_{i}\right], i=1,2, \ldots n, \bar{x}_{i}$ is called a sample point.
5. The definite integral of f on [a, b]
$\int_{a}^{b} f(x) d x=\lim _{|P| \rightarrow 0} \sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x_{i}=$ The area of S

$$
\mathrm{S}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}, 0 \leq \mathrm{y} \leq \mathrm{f}(\mathrm{x})\}
$$

6. A closed rectangle R

$$
R=[a, b] \times[c, d]=\left\{(x, y) \in R^{2} \mid a \leq x \leq b, c \leq y \leq d\right\}
$$

Example: Rectangle
$1 .[0,1] \times[2,4]=\left\{(x, y) \in R^{2} \mid 0 \leq x \leq 1,2 \leq y \leq 4\right\}$
2. $[1,2] \times[2$,

Evaluation of Double Integral

(i) When $x_{1}=\emptyset_{1}(y)$ and $x_{2}=\emptyset_{2}(y)$ are the functions of y and $\mathrm{y}_{1}, \mathrm{y}_{2}$ are constants. Then the double integral of the function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ over the region R is defined as

$$
\iint_{R} f(x, y) d x d y=\int_{y_{1}}^{y_{2}} \int_{x_{1}=\emptyset_{1}(y)}^{x_{2}=\emptyset_{2}(y)} f(x, y) d x d y
$$

(ii) When $y_{1}=\emptyset_{1}(x)$ and $y_{2}=\emptyset_{2}(x)$ are the functions of x and $\mathrm{x}_{1}, \mathrm{x}_{2}$ are constants. Then the double integral of the function $f(x, y)$ over the region R is defined as

$$
\iint_{R} f(x, y) d x d y=\int_{x_{1}}^{x_{2}} \int_{y_{1}=\emptyset_{1}(x)}^{y_{2}=\emptyset_{2}(x)} f(x, y) d y d x
$$

When x_{1}, x_{2} and y_{1}, y_{2} are constant Then the double integral of the function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ over the region R is defined as

In this case the order of integration is immaterial.
Evaluation of Double Integral in Polar Co-ordinates
The double integral bounded by the straight lines $\theta=\theta_{1}, \theta=\theta_{2}$ and the curves $r=r_{1}, r=r_{2}$ is defined as

$$
\int_{\theta_{1}}^{\theta_{2}} \int_{r_{1}}^{r_{2}} f(r, \theta) d r d \theta
$$

In polar co-ordinates first we have to integrate w.r.t. r and than w.r.t. the constant limits θ

Assignment

Evaluate
(i) $\int_{0}^{3} \int_{1}^{4} x^{2} y d x d y$
(ii) $\int_{0}^{3} \int_{1}^{4} x^{2} y d y d x$
(iii) $\int_{0}^{4} \int_{0}^{8} \frac{1}{4}\left(64-8 x+y^{2}\right) \mathrm{dydx}$
(iv) $\int_{0}^{8} \int_{0}^{4} \frac{1}{4}\left(64-8 x+y^{2}\right) d x d y$
(v) $\int_{0}^{3} \int_{1}^{2}(3 x+2 y) d x d y$

Double Integral over General Regions

Let D be a bounded region and $\mathrm{D} \subset \mathrm{R}, \mathrm{f}$ is a function defined on D. Define a new function

Definition :

1. The double integral of f over D is

$$
\iint_{D} f(x, y) d A=\iint_{R} F(x, y) d A
$$

2. A plane region D is said to be of type I if $\mathrm{D}=\left\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}, \mathrm{g}_{1}(\mathrm{x}) \leq \mathrm{y} \leq \mathrm{g}_{2}(\mathrm{x})\right\}$, where g_{1}, g_{2} are two continuous function.
3. A plane region D is said to be of type II if $D=\left\{(x, y) \mid h_{1}(y) \leq x \leq h_{2}(y), c \leq y \leq d\right\}$, where h_{1}, h_{2} are two continuous function.

Example:

1. $\mathrm{D}_{1}=\{(\mathrm{x}, \mathrm{y}) \mid 0 \leq \mathrm{x} \leq \pi, \sin \mathrm{x} \leq \mathrm{y} \leq 1\}$, Type I
2. $\mathrm{D}_{2}=\left\{(\mathrm{x}, \mathrm{y}) \mid-1 \leq \mathrm{y} \leq 1,2 \mathrm{y}^{2} \leq \mathrm{x} \leq 1+\mathrm{y}^{2}\right\}$, Type II

Properties:

1. If f is continuous on a type I region D such that $\mathrm{D}=\left\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}, \mathrm{g}_{1}(\mathrm{x}) \leq \mathrm{y} \leq \mathrm{g}_{2}(\mathrm{x})\right\}$, then $\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x$
2. If f is continuous on a type II region D then
$\iint_{D} f(x, y) d A=\int_{C}^{d} \int_{h_{1(y)}}^{h_{2}(y)} f(x, y) d x d y$
where $\mathrm{D}=\left\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{h}_{1}(\mathrm{y}) \leq \mathrm{x} \leq \mathrm{h}_{2}(\mathrm{y}), \mathrm{c} \leq \mathrm{y} \leq \mathrm{d}\right\}$

Example:

1. Evaluate $\iint_{D}(x+3 y) d A$

$$
\text { Where } \mathrm{D}=\left\{(\mathrm{x}, \mathrm{y}) \mid-1 \leq \mathrm{x} \leq 1,2 \mathrm{x}^{2} \leq \mathrm{y} \leq 1+\mathrm{x}^{2}\right\}
$$

Ans:

$$
\begin{aligned}
& \iint_{D}(x+3 y) d A=\int_{-1}^{1} \int_{2 x^{2}}^{1+x^{2}}(x+3 y) d y d x \\
& =\int_{-1}^{1} x\left(1+x^{2}-2 x^{2}\right)+\frac{3}{2}\left(\left(1+x^{2}\right)^{2}-\left(2 x^{2}\right)^{2}\right) d x \\
& =\int_{-1}^{1} x+x^{3}-2 x^{3}+\frac{3}{2}+3 x^{2}+\frac{3}{2} x^{4}-4 x^{4} d x \\
& =\left.\left(\frac{1}{2} x^{2}-\frac{1}{4} x^{4}+\frac{3}{2} x+x^{3}-\frac{1}{2} x^{5}\right)\right|_{-1} ^{1}=\frac{3}{2}+1-\frac{1}{2}=2
\end{aligned}
$$

2. Evaluate $\iint_{D} x y d A$ where D is the region bounded by the line $\mathrm{y}=\mathrm{x}-1$ and the parabola $\mathrm{y}^{2}=2 \mathrm{x}+6$

$$
\begin{aligned}
& \mathrm{D}=\{(\mathrm{x}, \mathrm{y}) \mid-3 \leq \mathrm{x} \leq 5, ? \leq \mathrm{y} \leq \sqrt{2 \mathrm{x}+6}\} \\
& \quad=\left\{(\mathrm{x}, \mathrm{y}) \left\lvert\, \frac{\mathrm{y}^{2}-6}{2} \leq \mathrm{x} \leq \mathrm{y}+1\right.,-2 \leq \mathrm{y} \leq 4\right\} \\
& \iint_{\mathrm{D}} \mathrm{xydA}=\int_{-2}^{4} \int_{\frac{y^{2}-6}{2}}^{\mathrm{y}+1} \mathrm{xydxdy}=36
\end{aligned}
$$

3. Find the volume of the tetrahedron bounded by the planes

$$
x=2 y, x=0, z=0 \text { and } x+2 y+z=2
$$

Sol:

$$
\begin{aligned}
& \mathrm{D}=\left\{(\mathrm{x}, \mathrm{y}) \mid 0 \leq \mathrm{x} \leq 1, \frac{\mathrm{x}}{2} \leq \mathrm{y} \leq \frac{2-\mathrm{x}}{2}\right\} \\
& \begin{aligned}
& \mathrm{V}=\iint_{\mathrm{D}} 2-x-2 y d A=\int_{0}^{1} \int_{\frac{x}{2}}^{\frac{2-x}{2}}(2-x-2 y) d y d x \\
&=\frac{1}{3}
\end{aligned}
\end{aligned}
$$

4. Evaluate $\int_{0}^{1} \int_{\mathrm{x}}^{1} \sin \left(\mathrm{y}^{2}\right) \mathrm{dydx} ; \quad \frac{1}{2}(1-\cos 1)$
5. Evaluate $\int_{0}^{1} \int_{\mathrm{x}}^{1} \cos \left(\mathrm{y}^{2}\right) \mathrm{dydx}$

Sol:

$$
\begin{aligned}
D & =\{(x, y) \mid 0 \leq x \leq 1, x \leq y \leq 1\} \\
& =\{(x, y) \mid 0 \leq y \leq 1,0 \leq x \leq y\}
\end{aligned}
$$

Double Integrals in Polar COORDINATES

Consider $\mathrm{R}=\{(\mathrm{r}, \theta) \mid \mathrm{a} \leq \mathrm{r} \leq \mathrm{b}, \alpha \leq \theta \leq \beta$

Polar rectangle

Example:

1. $\mathrm{R}=\{(\mathrm{r}, \theta) \mid 0 \leq \mathrm{r} \leq 1,0 \leq \theta \leq 2 \pi\}$
2. $\mathrm{R}=\{(\mathrm{r}, \theta) \mid 1 \leq \mathrm{r} \leq 3,0 \leq \theta \leq \pi\}$
3. $R=\left\{(r, \theta) \mid 1 \leq r \leq 3, \frac{\pi}{3} \leq \theta \leq \frac{\pi}{2}\right\}$

The area of R is $\mathrm{A}(\mathrm{R})=\left(\pi \cdot 3^{2}-\pi \cdot 1^{2}\right) \frac{\frac{\pi}{2}-\frac{\pi}{3}}{2 \pi}$

$$
\begin{aligned}
& =\frac{1}{2}\left(3^{2}-1^{2}\right) \cdot\left(\frac{\pi}{2}-\frac{\pi}{3}\right) \\
& =\frac{2}{3} \pi
\end{aligned}
$$

4. $\mathrm{R}_{\mathrm{ij}}=\left\{(\mathrm{r}, \theta) \mid \mathrm{r}_{\mathrm{i}-1} \leq \mathrm{r} \leq \mathrm{r}_{\mathrm{i}}, \theta_{\mathrm{j}-1} \leq \theta \leq \theta_{\mathrm{j}}\right\}$

The area of $\mathrm{R}_{\mathrm{ij}}-\Delta \mathrm{A}_{\mathrm{ij}}$ is

$$
\begin{aligned}
\Delta \mathrm{A}_{\mathrm{ij}} & =\frac{1}{2} \mathrm{r}_{\mathrm{i}}^{2} \Delta \theta_{\mathrm{j}}-\frac{1}{2} \mathrm{r}_{\mathrm{i}-1}^{2} \Delta \theta_{\mathrm{j}}=\frac{1}{2}\left(\mathrm{r}_{\mathrm{i}}+\mathrm{r}_{\mathrm{i}-1}\right)\left(\mathrm{r}_{\mathrm{i}}-\mathrm{r}_{\mathrm{i}-1}\right) \Delta \theta_{\mathrm{j}} \\
& =\mathrm{r}_{\mathrm{i}}^{*} \Delta \mathrm{r}_{\mathrm{i}} \Delta \theta_{\mathrm{j}}
\end{aligned}
$$

Where $\Delta \mathrm{r}_{\mathrm{i}}=\mathrm{r}_{\mathrm{i}}-\mathrm{r}_{\mathrm{i}-1}, \Delta \theta_{\mathrm{j}}=\theta_{\mathrm{j}}-\theta_{\mathrm{j}-1,} \mathrm{i}=1, \cdots \mathrm{~m} ; \mathrm{j}=1, \cdots \mathrm{n}$

The Riemanu sum of f on R is

$$
\begin{aligned}
& \sum_{\mathrm{i}=1}^{\mathrm{m}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{f}\left(\mathrm{r}_{\mathrm{i}}^{*} \cos \theta_{\mathrm{j}}^{*}, \mathrm{r}_{\mathrm{i}}^{*} \sin \theta_{\mathrm{j}}^{*}\right) \Delta \mathrm{A}_{\mathrm{ij}} \\
& =\sum_{\mathrm{i}=1}^{\mathrm{m}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{f}\left(\mathrm{r}_{\mathrm{i}}^{*} \cos \theta_{\mathrm{j}}^{*}, \mathrm{r}_{\mathrm{i}}^{*} \sin \theta_{\mathrm{j}}^{*}\right) \mathrm{r}_{\mathrm{i}}^{*} \Delta \mathrm{r}_{\mathrm{i}} \Delta \theta_{\mathrm{j}} \\
& \rightarrow \int_{\alpha}^{\beta} \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta) \mathrm{rdrd} \theta
\end{aligned}
$$

Properties

1. Let $\mathrm{R}=\{(\mathrm{r}, \theta) \mid \mathrm{a} \leq \mathrm{r} \leq \mathrm{b}, \alpha \leq \theta \leq \beta\}$ be a polar rectangle and $0 \leq \beta-\alpha \leq 2 \pi$ If f is continuous on R , then $\iint_{\mathrm{R}} \mathrm{f}(\mathrm{x}, \mathrm{y}) \mathrm{dA}=\int_{\alpha}^{\beta} \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{r} \cos \theta, \operatorname{rsin} \theta) \mathrm{rdrd} \theta$
2. Let $\mathrm{D}=\left\{(\mathrm{r}, \theta) \mid \alpha \leq \theta \leq \beta, \mathrm{h}_{1}(\theta) \leq \mathrm{r} \leq \mathrm{h}_{2}(\theta)\right\}$ be a polor region. If f is continuous on D then

$$
\iint_{\mathrm{D}} \mathrm{f}(\mathrm{x}, \mathrm{y}) \mathrm{dA}=\int_{\alpha}^{\beta} \int_{\mathrm{h}_{1}(\theta)}^{\mathrm{h}_{2}(\theta)} \mathrm{f}(\mathrm{r} \cos \theta, \operatorname{rsin} \theta) \mathrm{rdrd} \theta
$$

NPTEL LINKS FOR REFERENCE

Double integral over rectangular domain.	$\underline{\underline{\text { http://nptel.ac.in/courses/1221010 }}}$

CHANGE OF ORDER OF INTEGRATION

In a double integral, if the limits of the Integration are constant, then the order of integration is immaterial, provided the limits of integration are changed accordingly. Thus

$$
\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

But if the limits of integration are variable, a change in the order of integration necessitates change in the limits of integration. A rough sketch of the region of integration help in fixing the new limit of integration.

- change of order of integration

0

- https://www.youtube.com/watch?v=BRFUvco07uU

TRIPLE INTEGRALS

The Triple integral of the function $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ over the region V is defined as $\iiint_{V} f(x, y, z) d V$

For purpose of evaluation, it can be expressed as the repeated integral
$\int_{z_{1}}^{z_{2}} \int_{y_{1}}^{y_{2}} \int_{x_{1}}^{x_{2}} f(x, y, z) d x d y d z \quad$ The order of integration depending upon the limits

Let $\mathrm{x}_{1}, \mathrm{x}_{2}$ be function of $\mathrm{y}, \mathrm{z} ; \mathrm{y}_{1}, \mathrm{y}_{2}$ be function of z and $\mathrm{z}_{1}, \mathrm{z}_{2}$ be constant, i.e,

Let $\mathrm{x}_{1}=\mathrm{f}_{1}(\mathrm{y}, \mathrm{z}), \mathrm{x}_{2}=\mathrm{f}_{2}(\mathrm{y}, \mathrm{z}), \mathrm{y}_{1}=\emptyset_{1}(\mathrm{z}), \mathrm{y}_{2}=\emptyset_{2}(\mathrm{z})$ and $\mathrm{z}_{1}=\mathrm{a}, \mathrm{z}_{2}=\mathrm{b}$

Then the Triple integral is evaluated as:-

$$
\begin{array}{|l|l|}
\int_{z_{1}=a}^{z_{2}=b} \int_{y_{1}=\emptyset_{1}(z)}^{y_{2}=\emptyset_{2}(z)} \int_{x_{1}=f_{1}(y, z)}^{x_{2}=f_{2}(y, z)} f(x, y, z) d x d y d y \\
d
\end{array} d z
$$

NPTEL LINK FOR REFERENCE

- Triple integral
- http://nptel.ac.in/courses/122101003/41

Change of Variables

Quite often, the evaluation of a double or triple integral is greatly simplified by a suit able change of variables:-

Let the variable x, y in the double integral $\iint_{R} f(x, y) d x d y$ be changed to u,v by means of relations $\mathrm{x}=x=\emptyset(u, v)=\varphi(u, v)$, then the double integral is transformed into $\iint_{R} f\{\varnothing(u, v), \varphi(u, v)\}|J| d u d v$, where $J=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{array}\right|$

Is the Jacobian of transformation from (x, y) to (u, v) co-ordinates and R^{\prime} is the region in the uv-plane which corresponds to the region R in the $x y$-plane
(i) To change cartesian co-ordinates (x, y) to polar co-ordinates(r, θ) Here we have $\mathrm{x}=\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{r} \sin \theta$ so that $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{r}^{2}$

$$
\begin{gathered}
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{rr}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r \\
\iint_{R} f(x, y) d x d y=\iint_{R} f(r \cos \theta, r \sin \theta) r d r d \theta \\
\text { i.e; replace } x \text { by } r \cos \theta, y \text { by } r \sin \theta \text { and } d x d y r d r d \theta
\end{gathered}
$$

Here we have

$$
\iiint_{V} f(x, y, z) d x d y d z=\iiint_{V} f(r \sin \theta \cos \emptyset, r \sin \theta \sin \emptyset, r \cos \theta) r^{2} \sin \theta d r d \theta d \emptyset
$$

Note. Equation of the sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{a}^{2}$ in spherical polar co-ordinates is $\mathrm{r}=\mathrm{a}$
(i) If the region of integration is the whole sphere, then

$$
0 \leq r \leq a, \quad 0 \leq \theta \leq \pi, \quad 0 \leq \emptyset \leq 2 \pi, \text { then }
$$

(ii) If the region of the integration is the positive octant

$$
0 \leq r \leq a, \quad 0 \leq \theta \leq \frac{\pi}{2}, \quad 0 \leq \emptyset \leq \frac{\pi}{2}
$$

$$
\begin{aligned}
& \mathrm{x}=\mathrm{r} \sin \theta \cos \varnothing \\
& y=r \sin \theta \cos \varnothing \\
& \mathrm{z}=\mathrm{r} \cos \theta \\
& \text { so that } \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{r}^{2} \\
& \mathrm{~J}=\left|\begin{array}{lll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \emptyset}
\end{array}\right| \\
& =\left|\begin{array}{ccr}
\sin \theta \cos \emptyset & r \cos \theta \cos \varnothing & -r \sin \theta \sin \varnothing \\
\sin \theta \sin \varnothing & r \cos \theta \sin \varnothing & r \cos \emptyset \sin \theta \\
\cos \theta & -r \sin \theta & 0
\end{array}\right|=r^{2} \sin \theta
\end{aligned}
$$

(iii)To change Cartesian co-ordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) to cylindrical co-ordinates ($\mathrm{r}, \emptyset, \mathrm{z}$)

Here we have

$$
\begin{aligned}
& \mathrm{x}=\mathrm{r} \cos \varnothing \\
& \mathrm{y}=\mathrm{r} \sin \varnothing \\
& \mathrm{z}=\mathrm{z} \\
& \mathrm{~J}=\left|\begin{array}{lll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \emptyset} & \frac{\partial x}{\partial z} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \emptyset} & \frac{\partial y}{\partial z} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial \emptyset} & \frac{\partial z}{\partial z}
\end{array}\right| \\
& \\
& =\left|\begin{array}{ccc}
\cos \emptyset & -r \sin \emptyset & 0 \\
\sin \varnothing & r \cos \emptyset & 0 \\
0 & 0 & 1
\end{array}\right| \\
& =r^{2}\left(\cos ^{2} \emptyset+\sin ^{2} \emptyset\right)=r
\end{aligned}
$$

$$
\iiint_{V} f(r \cos \emptyset, r \sin \emptyset, z) r d r d \emptyset d z
$$

Note - for the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{a}^{2}, \mathrm{z}=0, \mathrm{z}=\mathrm{h}$, the limits of the integration are $0 \leq r \leq a, \quad 0 \leq \theta \leq 2 \pi, \quad 0 \leq \emptyset \leq h$
If the region of integration is a cylinder (or cone), change the problem to cylindrical polar coordinates.

NPTEL LINKS FOR REFERENCE

- Change of variable in double \& triple integral.
- http://nptel.ac.in/courses/122104017/28
- http://nptel.ac.in/courses/122101003/42

AREA BY THE DoUBLE INTEGRATION

(a) Cartesian co-ordinates:- The area A of the region bounded by the curves $\mathrm{y}=\mathrm{f}_{1}(\mathrm{x})$, $\mathrm{y}=\mathrm{f}_{2}(\mathrm{x})$ and the lines $\mathrm{x}=\mathrm{a}, \mathrm{x}=\mathrm{b}$ is given by $A=\int_{a}^{b} \int_{f_{1}(x)}^{f_{2}(x)} d y d x$
The area A of the region bounded by the curves $x=f_{1}(y), x=f_{2}(y)$ and the lines $y=c$, $\mathrm{y}=\mathrm{d}$ is given by

$$
A=\int_{c}^{d} \int_{f_{1}(y)}^{f_{2}(y)} d x d y
$$

(a) Polar co-ordinates :- The area A of the region bounded by the curves $\mathrm{f}_{1}(\theta), \mathrm{r}=\mathrm{f}_{2}(\theta)$ and the lines $\theta=\alpha, \theta=\beta$ is given by $A=\int_{\alpha}^{\beta} \int_{f_{1}(\theta)}^{f_{2}(\theta)} r d r d \theta$

Volume as a double integral

$$
V=\lim _{\substack{\delta x \rightarrow 0 \\ \delta y \rightarrow 0}} \sum z \delta x \delta y=\iint_{R} z d x d y
$$

Volume as Triple Integral

The Volume V of a three dimensional region is given by $\iiint_{V} d x d y d z$ If the region is bounded by $\mathrm{x}_{1}=\mathrm{f}_{1}(\mathrm{y}, \mathrm{z}), \mathrm{x}_{2}=\mathrm{f}_{2}(\mathrm{y}, \mathrm{z}), \mathrm{y}_{1}=\emptyset_{1}(\mathrm{z}), \mathrm{y}_{2}=\emptyset_{2}(\mathrm{z})$ and $\mathrm{z}=\mathrm{a}, \mathrm{z}=\mathrm{b}$, then

$$
V=\int_{a}^{b} \int_{\emptyset_{1}(z)}^{\emptyset_{2}(z)} \int_{f_{1}(y, z)}^{f_{2}(y, z)} d x d y d z
$$

The order of integration may be changed with a suitable change in the limits of integration.

In cylindrical co-ordinates, we have $V=\iiint_{V} r d r d \emptyset d z$

In spherical polar co-ordinates, we have $V=\iiint_{V} r^{2} \sin \theta d r d \emptyset d \theta$

NPTEL LINKS FOR REFERENCE

- Area and Volume by double integration
- http://www.nptel.ac.in/courses/122101003/40

Volume of Solids of Revolution

If the area R revolves about x -axis, then

$$
\begin{equation*}
V=2 \pi \iint_{R} y d y d x \tag{i}
\end{equation*}
$$

If the area R revolves about y -axis, then

$$
\begin{equation*}
V=2 \pi \iint_{R} x d x d y \tag{ii}
\end{equation*}
$$

changing to polar co - ordinates by putting
$\mathrm{x}=\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{r} \sin \theta$ and $\mathrm{dy} \mathrm{dx}=\mathrm{rdr} \mathrm{d} \theta$
Formula (i) becomesis a function of n, is called the Gamma Function and is denoted by

$$
\begin{gathered}
\Gamma n=\int_{0}^{\infty} e^{-x} x^{n-1} d x, n>0 \\
\text { In Particular, } \Gamma 1=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{x}} \mathrm{dx}=\left|\mathrm{e}^{-\mathrm{x}}\right|_{0}^{\infty}=1
\end{gathered}
$$

Properties of Gamma function
(i) $\Gamma n+1=n \Gamma n$
(ii) $\Gamma n+1=n$! when n is a positive integer
(iii) $\Gamma \frac{1}{2}=\sqrt{\pi}$

$$
\begin{gathered}
\text { BETA FUNCTION } \\
B(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x, m>0, n>0
\end{gathered}
$$

Properties of Beta Function
(i) $\quad \mathrm{B}(\mathrm{m}, \mathrm{n})=\mathrm{B}(\mathrm{n}, \mathrm{m})$
(ii) $\quad B(m, n)=\frac{\Gamma(m)(n)}{\Gamma(m+n)}$
(iii) $\int_{0}^{\frac{\pi}{2}} \sin ^{p} x \cos ^{q} x d x=\frac{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{q+1}{2}\right)}{2 \Gamma\left(\frac{p+q+2}{2}\right)}$
case 1 If $p=q=0$, then
(iv) $\int_{0}^{\frac{\pi}{2}} d x=\frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{2 \Gamma(1)}$

$$
\text { So } \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
$$

Case 2 If $p=n$ and $q=0$, then
(v) $\quad \int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)} \cdot \frac{\sqrt{\pi}}{2}$

Case 3 If $p=0$ and $q=n$, then
(vi) $\quad \int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)} \cdot \frac{\sqrt{\pi}}{2}$

Relationship between Beta Gamma Function

we write the product of two factorials as the product of two integrals. To facilitate a change in variables, we take the integrals over a finite range.

$$
m!n!=\lim _{a^{2} \rightarrow \infty} \int_{0}^{a^{2}} e^{-u} u^{m} d u \int_{0}^{a^{2}} e^{-v} v^{n} d v, \quad \begin{array}{ll}
& \mathfrak{R}(m)>-1 \\
& \mathfrak{R}(n)>-1
\end{array}
$$

Replacing u with x^{2} and v with y^{2}, we obtain

$$
m!n!=\lim _{a \rightarrow \infty} 4 \int_{0}^{a} e^{-x^{2}} x^{2 m+1} d x \int_{0}^{a} e^{-y^{2}} y^{2 n+1} d y
$$

Transforming to polar coordinates gives us

$$
\begin{aligned}
m!n! & =\lim _{a \rightarrow \infty} 4 \int_{0}^{a} e^{-r^{2}} r^{2 m+2 n+3} d r \int_{0}^{\pi / 2} \cos ^{2 m+1} \theta \sin ^{2 n+1} \theta d \theta \\
& =(m+n+1)!2 \int_{0}^{\pi / 2} \cos ^{2 m+1} \theta \sin ^{2 n+1} \theta d \theta
\end{aligned}
$$

The definite integral, together with the factor 2 , has been named the beta function

$$
\begin{aligned}
B(m+1, n+1) & \equiv 2 \int_{0}^{\pi / 2} \cos ^{2 m+1} \theta \sin ^{2 n+1} \theta d \theta \\
& =\frac{m!n!}{(m+n+1)!}=B(n+1, m+1)
\end{aligned}
$$

Equivalently, in terms of the gamma function

$$
B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}
$$

