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SUCCESSIVE DIFFERENTIATION




The Process of Differentiating a function again and again is called
successive Differentiation.

If y be a function of X, then its successive derivatives are denoted by

dy d*y d’y d*y
dx ) dxz ) dx3 ) mes mmm wms mes wmE wms wwwow dxn
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Example 1. Find the fourth derivative of tan x at x =

2
Example 2. if y = Ae™ + Be™, Prove that% — (m+n) Z—z +

mny = 0



The Process of Differentiating a function again and again is called successive Differentiation.

If y  be a function of x, then its successive derivatives are denoted by   







Example 1. Find the fourth derivative of tan x at 

Example 2. 


SOME STANDARD RESULTS

1.nt" derivative of x™ = (mni;)'xm_” if meN,m > n.
2.nt" derivative of (ax + b)) =m(m —1)(M—2) . e e oo oo (m —n +

DD(ax + b)™ ™ a™ if meN,m > n.
e =1 el
ax+b . (ax—b)n+1
(- 1(n—1)1a™
(ax+b)"

.Find the nt" derivative of

w

.Find the n'" derivative oflog(ax + b) =
.nt" derivative of a™ = m"a™ (loga)™
.nt" derivative of e™ = m"e™*

.nt" derivative of sin(ax + b) = a”sini?iéax + b + n%)

0 N OO u b

.nt" derivative of cos(ax + b) = a™ cosi?Eéax + b + n%)
9.nt" derivative of e®*sin(bx + ¢) = (a? + b?)ze® sini?Eébx e
ntan! 2)
a
10. nt" derivative of e®*cos(bx + ¢) = (a?® + b?)ze? cosi?Ebe +c +

ek
ntan 1—)
a



1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 


Statement:- if y=uv where u and v are function of x, having derivative of n" order,
then

VYVn = nCOunv + nclun_lvl E nczun_zvz o e L e e +nCrun_rvr
+ v e UY,

where suf fixes denote the number of derivatives.

Example 1. If y = x" log x , prove that y,, .1 = n;

Example 2.

If y = cos (mlogx),prove that x*y,.» + 2n + Dxy,.; + (m? +n?)y, =0



Statement:- if y=uv where u and v are function of x, having derivative of nth order, then







Example 1. 










LINK FOR REFERENCE

Leibnitz’s Theorem for successive
differentiation.

https://www.youtube.com/watch?v=67uJGws
Z7-Q)



TAYLOR MACLAURIN’S SE

(1)
2

The Taylor’s series is named after the
English mathematician Brook Taylor
(1685-1731).

The Maclaurin’s series Is named for the
Scottish mathematician Colin Maclaurin
(1698-1746).

This is despite the fact that the Maclaurin’s series
IS really just a special case of the Taylor’s series.



APPLICATIONS OF TAYLOR'S AND
MACLAURIN’S SERIES

Expressing the complicated functions in terms of
simple polynomials.

Complicated functions can be made smooth.
Differentiation of the such functions can be

done as often as we please.

In the field of Ordinary Differential Equations when
finding series solution to Differential Equations.

In the study of Partial Differential Equations.




GENERAL TAYLOR’S SERIES

(1) Expressing f(x + h) in ascending integral powers of h.
h? h3
flx+h) =f0)+ hf' )+ o)+ o fe) + -

provided that all derivatives of f(x) are continuous and exist in the
Interval [x Xx+h]

(11) Expressing f(x) in ascending integral powers of (x — a)
f) =fla+(x-a)

(x—a)i .. (x —a)’
g B e

= f(@) + @ - a)f'(@) + fr(@) + o













GUIDELINES FOR FINDING TAYLOR SERIES

Expanding f(x) about x = a
Differentiate f(x) several times
Evaluate each derivative at x = a

Evaluate f(a),f'(a),f"(a)

Substitute the above values In

Tign 3453
f(x)=f(a)+(x—a)f'(a)+( ) e a)









Example:

Find the Taylor series for f(x) = sinx atc = n/4

f(x) = sin x f (”j :Q
4 2
f’(x) = cos X f '(”j:\/z
4 2
f(x)= -sinx f"(ﬂJ=—2
4 2
f(X) = - cos X f (” :_ﬁ
4 2
fA(x) = sinx 20 ”j:\/z
4 2



cCont....

s =)
nz n!

SV St D V2 V2
= (- T) k- Ty - xRy e k- Ty

)(X c) \/_ V2 J2 T
l 2 ( —_)—ﬁ( ——) ..... ﬁ(x—z) B

Zﬁ'w_ﬂ)_(x—i:f_(x—zf )

2 a 2! 3! n!

= f(c)+ f'(c)(x—c)+..... f‘”r:l(c) (x—c) +....

5




MACLAURIN’S SERIES

The Maclaurin’s series Is simply the Taylor’s series
about the point x =0

It IS given by

2 3
[0 =10)+ 2 O+ fO)+ T @)+ =






Find the Maclaurin’s series for f(x) = In(x? + 1)

f(x) = In(x% +1)
2 X
1+ x°
. 2-2x
AP
4x(x° —3)
(x° +1)°
12(—x* +6x* —1)
(x* +1)°
48x(x* —10x* +5)

f1(x) =

t(x)

f "(x) =

f(x) =

FO(x) =

(x* +1)°

f(0)=0
f'(0)=0

f"(0) =2

f"(0)=0

f9(0)=-12

F(0)=0



Cont....

48x(x* 10’ +5) f(0)=0 f"(0)=0

f®(x)= f(0)=0 f*(0)=-12
a8 f0)=2  £(0)=0

£9)(x) = —240(5x6(—X}Fjrxl“):ﬁx2 -1 £ ©)(0) = 240

A . O 0}t PO 0 P

nzzc; e f(0)+ f'(0)x + o X X

:O+O+3x2 +9x3+_—12x4+9x5+@x6 .........
2! 3! 41 51 6!




Find the Taylor series for f(x) = e2*atc=0

f(x) = e f(0)= 1
f'(x) = -2 f’(0)= -2
f7(x)= de Ioel0) =t
fr(x) = -8 fi220)= 8
fA(x) = 162 f4(0) = 16
> f(:!xn = 1@+ Ox+ D f(:!(o) t
ok 4x*  8x’ i 2] i
e n!
:i(—ZX)”



MACLAURIN’S SERIES

We defined:

the nth Maclaurin polynomial for a function as

n

kz=(; 1:kk(!O)Xk =f(0)+ f'(0)x+ f”z(!o) X% 4.+ f”n(!o) X"

the nth Taylor polynomial for f about x = x, as

> 2 = 10+ 1 00)c 1)+ ) FU) (¢




Example
Derive the Maclaurin series

2 X3

eX:1+x+—|+—|+---

The Maclaurin series is simply the Taylor series about the point x=0

h h’ h h°
f(x+h)=f(x)+ f'(x)h+ f "(x)a +f ”’(x)a i W(X)T e e

| | 5
h? h? h* h®
f(0+h)=f(0)+ f'(O)h+ f ”(0)5 + f '"(o)g + f ""(0)7 + f ""'(o)g oo

DERIVATION FOR MACLAURIN SERIES FOR

E.I



Since  f(x)=¢e*, f'(x)=¢e*, f"(x)=¢",..., f"(x)=¢* and
f"(0) =e’ =1
the Maclaurin series is then

0 0

f(h):(e°)+(e°)h+ﬂh2+@h3...
2! 3l
:1+h+£h2+£h3...
2! 3

So,

X2 3

f(x):1+x+—+x—+...
21 3

DERIVATION (CONT.)



Find the Maclaurin polynomial for f(x) = x cos X

We find the Maclaurin polynomial cos x and multiply by x

f(x) = cos x f(0)=1
f’(x) = -sin x f(0)=0
f(X) = - cos X 17(0)= -1
f(x) = sin e n
f(x) = cos x =1
cosx=f(0)+ f'(0)x+ f;(IO) e f‘:|(0) ki
:1+O—42X|2—0+.f! ..... =1—§!+):!—§! .....
3 > 7 ). n 2N+l
XCOS X = X — )2(! i );” = )é! ..... :nz_; _(1;;;!



Find the Maclaurin polynomial for f(x) = sin 3x

We find the Maclaurin polynomial sin x and replace x by 3x

f(x) = sin x f(0)=0
f’(X) = cos x f’(0)=1
f”(x) = -sinx R =0
f’(X) = - cos X F7(0) = -1
fA(x) = sin x f40)= 0
n (n)
sinx= f(0)+ f'(0)x+ f2(|0) X : l(O) X" +....
! [t
3 S 5 v
=O+X—I—O—X—-I—O ..... :X—X—+X A
! SlEeo) ST,
d 2 & n n+1
sinax=3x— X B BN« ()3

3! ol /! < (2n+1)!



Taylor’s & Maclaurin’s Theorem for one
variable.

http://nptel.ac.in/courses/122104017/11

http://www.creativeworld9.com/2011/02/it-
guest-lecture-mathematics-ii-video.html



http://nptel.ac.in/courses/122104017/11
http://www.creativeworld9.com/2011/02/iit-guest-lecture-mathematics-iii-video.html

ASYMPTOTES

Definition: An asymptote of a curve is a line such that the distance between
the curve and the line approaches zero as they tend to infinity. In other
words..

A Straight line at a finite distance from the origin, is said to be an asymptote
of an Infinite branch of a curve, if the perpendicular distance of a point P
on that branch from the straight line tends to zero as P tends to infinity

along the branch of the curve.

Qx,w
M

Y &

v

v




Definition: An asymptote of a curve is a line such that the distance between the curve and the line approaches zero as they tend to infinity. In other words..

A Straight line at a finite distance from the origin, is said to be an asymptote of an infinite branch of a curve, if the perpendicular distance of a point P on that branch from the straight line tends to zero as P tends to infinity along the branch of the curve.
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A Curve With Finite Branches

A Curve With Infinite Branches

Ellipse :

Hyperbola :

2 2

% + Z—Z =11 Its two branches are
2 2
y= b [1—> and y=-b /1—%
(upper half) (lower half)

(Both branches lie within x=a,x=-a ,y=b,
y=-b.)

2 .2
X

i
a’ b?

Its infinite branches are
y = Zw/xz @, y= —gw/xz B

(Herey - +o as x - o)




            Its two branches are





    y=   b    and  y= -b      

(upper half)                    (lower half)

(Both branches lie within x=a,x= -a ,y=b ,

y=-b.)

         

[image: Image result for image of ellipse]

image1.png










	

Its infinite branches are

,     

       (Here     as  )

   

[image: ... vzdáleností. ( hyperbola-Cabri II plus , hyperbola-Cabri II]

image1.jpeg








KINDS OF ASYMPTOTES

/|

Horzontal Vertical QOblique
Asymptole Asymptote Asymptote




ASYMPTOTE PARALLEL TO AXES

Asymptote Parallel to x-axis

Rule to find the asymptote || to X-axis, is to equate to zero the real linear
factors in the co-efficient of the highest power of x in the equation of the
curve.

Asymptote Parallel to y-axis

Rule to find the asymptote || to Y-axis, is to equate to zero the real linear

factors in the co-efficient of the highest power of y in the equation of the
curve.

Example 1. Find the x?y? — a?(x? + y?) —a3(x + y)
+ a*Asmptote Parallel to axes

Example 6. Find the x?y? — x°y —xy* +x+y + 1
= 0 Asmptote Parallel to axes

Oblique Asymptote

The equation of straight line y=mx+c is the oblique asymptote to the given
curve




Asymptote Parallel to x-axis

Rule to find the asymptote || to X-axis, is to equate to zero the real linear factors in the co-efficient of the highest power of x in the equation of the curve.

Asymptote Parallel to y-axis

Rule to find the asymptote || to Y-axis, is to equate to zero the real linear factors in the co-efficient of the highest power of y in the equation of the curve.






The equation of straight line y=mx+c is the oblique asymptote to the given curve 


WORKING RULE FOR FINDING OBLIQUE
ASYMPTOTES OF AN ALGEBRAIC CURVE

OF THE NTH DEGREE

1.Find the @, (m). This can be obtained by putting x=1, y=m in the
highest degree terms of the given equation of the curve.

2.Equate @,,(m) to zero and solve for m.
Let its roots be m;,m,,ms,...........

3.Find @.,_; (m) by putting x=1 and y=m In the next lower terms of
the equation. Similarly @,,_, (m) may be found out by putting x=1
and y=m in the next lower degree terms in the curve and so on.

4.Find the values of ¢1,c2,c3,..........cceen..... corresponding to the
- - _ Pn—1(m)
values m{,moms,........... by using equation ¢ = S

5.Then the required asymptotes are y= mix+c; ,y=



1. Find the . This can be obtained by putting x=1, y=m in the highest degree terms of the given equation of the curve.

2. Equate  to zero and solve for m.

Let its roots be m1,m2,m3,………..

3. Find  by putting x=1 and y=m in the next lower terms of the equation. Similarly  may be found out by putting x=1 and y=m in the next lower degree terms in the curve and so on.

4. Find the values of c1,c2,c3,……………….. corresponding to the values  m1,m2,m3,………..by using equation 

5. Then the required asymptotes are y= m1x+c1 ,y= m2+c2,…………………..


6.1f @, (m) = 0 for some value of m and @,,_,(m) # 0corressponding
to that value, then there will be no asymptote corresponding to that value

of m.
7.1f @,,(m) = 0 and @,,_; (m) # 0 for some value of m, the value of c are

determined by
2

=5 B (m) + CB,_; (m) + B, 5 (m) = 0,

And this will determine two value of ¢ and thus we shall have two parallel
asymptotes corresponding to this value of m.



6. If corressponding to that value, then there will be no asymptote corresponding to that value of m.

7. If  and  for some value of m, the value of c are determined by 



And this will determine two value of c and thus we shall have two parallel asymptotes corresponding to this value of m.


Example 1. Find the asymtote of the curve (x — y)*(x + 2y — 1)
=3x+y—7

Example 2. Find all the asymtote of the following curve
(D)y?(x — 2a) = x3 —a’

(i))y3 — 2xy? —x’y +2x3 +3y? —7xy + 2x* +2x + 2y +1 =0
(ii))y3 —xy? —x’y+x3 + x4 —y2 =0

Example 3.show that the asymptotes of the curve xzy2 —a®*(x? + yz)
—ax+y)+a*=0

Form the square through two of whose vertices the curve passes.















Form the square through two of whose vertices the curve passes.


PICTORIAL EXAMPLE 1

)= graphed on Cartesian coordinates.

i
X

1 1 1 1 1
(93] F =N 8] ra - o p— na L2 =Y (9]

The x and y-axes are the asymptotes of the curve.


https://en.wikipedia.org/wiki/Cartesian_coordinates

PICTORIAL EXAMPLE 2
The graph of f(z) = (2’ +z+1)/(z +1)

y = X Is the Asymptote



PICTORIAL EXAMPLE 3

The graph of x? + y? = (xy)?, with 2 horizontal and 2
vertical asymptotes

: 2 = e ot

L asymptote ——

-3 —2 —fL 0 L 2 3




PICTORIAL EXAMPLE 4

The graph of f(z)=1 + %

Pz

The y-axis (x = 0) and the liney = x are both
acvmnptotes




PICTORIAL EXAMPLE 5
The graph of x3 + y3 = 3axy

2

1:‘\*\ /7
NV |

.I.\\I.

=g = | 0 1 2
X

A cubic curve, the folium of Descartes (solid) with
a single real asymptote (dashed) given by x +y + a
=)




PICTORIAL EXAMPLE 5
The graph of x3 + y3 = 3axy

2

1:‘\*\ /7
NV |

.I.\\I.

=g = | 0 1 2
X

A cubic curve, the folium of Descartes (solid) with
a single real asymptote (dashed) given by x +y + a
=)




PICTORIAL EXAMPLE 6
The graph of Hyperbola * _ ¥ _ 4

EE bE

Its asymptotes are y =Iiir
a



ASYMPTOTE OF THE POLAR CURVES

If aisarootof the equation f(6)
= 0, then rsin(@ — a)

1
is an asympote of the polar curve — = f(0)

T (@ r

Working rule for finding the asymptotes of polar curves.

1.Write down the given equation as % = f(0)

2.Equate f(0) to zero and solve for 8 = 04, 6,,05, ... ... ... .....
3.Find f (@) and calculate f (0) at 6 = 61,605,053, ... cce eo. ...

1 : %
f,(gl),rsm(é? —0,) =

4.Then write asymptote as r sin(6 — 61) =

1








Working rule for finding the asymptotes of polar curves.

1. Write down the given equation as

2. Equate  to zero and solve for 

3. Find  and calculate  at 

4. Then write asymptote as ……………………


IMPORTANT FORMULAS

1.1f sin(8) = 0,then 6 = %} s
2.1fcosf = 0,then 0 = (2n + 1)%
3.1fsinf = sina ,then 8 = nn + (—1)"«a
4.1fcos@ = cosa ,then 0 = 2nmt + b nel
5. Iftanf = tana ,then 8 = nt + «
6.sin(nmt + 6) = (—1)"sin 6
7.cos(nmt+0) = (—1)"cos b
8.tan(nt + 6) = tan 6

Example find the asymptotes of the following polar curves
(i)r =atan@

(ii)rsin@ = 2 cos 26 |:>



1. 

2. 

3. 

4.                          

5. 

6. 

7. 

8. 












Derivative of a function

Single-Variable Function  Two-Variable Function

Recall how we find the
derivative for a Single
Variable function f(x)

df o fxrh) - ()

. Rate of

- change of f S P s -

with respect  Faiis ehgnge of f Wlth Fespect to x
to x (slope) ‘Rate of change of f-with respectio y: .




Partial derivatives of a function

of fim f(x+h,y)—f(xYy)
&_ h—0
ﬂ_lim f(x,y+k)—f(x,y)
6y k—0
Remarks:

o|t is called the Partial Derivative
because it describes the derivative
e _ in one direction.

"h"‘énﬁqe of f W|th Féspect 1o X | Scripted “d”, not the regular “d” or

L

':.R’_""f;'_-'fl_ff@f change offwith respectioy . [EVe
\When differentiate f with respect to

X, we treat y as if y were a constant,
and vice versa.




EX: Given f(X,y) = x3 - X2y + xy + 3y?2

Find of
OX HERE: we treat "y" as a constant!!!!
of O

& &(Xe’ X2Y+Xy+3y2)

= O A
== _(X3 SR 1 5 7o) i
8x2 )—Y P (X2)+y o (X) + = (3y2)
=3x° —y(2x)+y@)+0



Assignment

If W=X" —Xy+Vy +2yz+22°+7,

: oW oW OW
i Tale B G R T e S

ox oy 0z



Example: A cellular phone company has the
following production function for a certain product:

p(x,y) = 50x*°y**,

where p Is the number of units produced
with x units of labor
and y units of capital.

a) Find the number of units produced with 125 units of
labor and 64 units of capital.

b) Find the marginal productivities of labor and of
capital.
c) Evaluate the marginal productivities at x = 125
and y = 64.



Higher-Order Derivatives

Single-Variable
Function

f'(x)= il (derivative)

dx
e d’f Aot
f"(x)=—— (2nddervative)
dx
d°f 7S
Feidiln )= o (3rd derivative)
X

Multi-Variable
Function

_at

" OX

(partial derivative of f wrt x)
_o°f

o O

(2nd partial derivative of f wrt X)

=01
XXX 8X3
(3rd partial derivative of f wrt x)

f

f

f




EX: Given f(X,y) = x3 - X2y + xy + 3y?2

We found f, =2—f =3X° —2Xy + YV
X

Find f

XXXX




Mixed Derivatives

fxy:(fx)y:(ij S50 (81‘)_ 0 f

ox ). oy ox  Oyox

of O ,of 0 f
fyxz(fy)xz el e

oy ) ox oy  oxdy
SO f :f

49



Assignment

If z="f(x,y)=xy’ +x"y+xe,
find the following partial derivatives:

Tt g~ gl =R e
&
|



A Function f(x,y) is said to be homogeneous of degree (or order) n in the variables x
and y if it can be expressed in the form x™ @ (%) or y" @ (yﬁ)

An alternative test for a function f(x,y) to be homogeneous of degree (or order ) n is that

f(x, ty) =t"f(x,y)

For example, if f(x,y) —\/_ \/_ , then
x(1+2)

(D) fGoy) = L= x'ep(2)
Vx(1 +\/¥

==  f(x,y) is a homogeneous function of degree %2 in x and y.
Similarly, a function f(x,y,z) is said to be homogeneous of degree n in the variables
XY,z if

fx,y,2) = x"(b(g,;) or y*(0) (; ;) or ”@(— X)



A Function f(x,y) is said to be homogeneous of degree (or order) n in the variables x and y if it can be expressed in the form  

An alternative test for a function f(x,y) to be homogeneous of degree (or order ) n is that 



For example, if   , then



             f(x,y) is a homogeneous function of degree ½ in x and y.

Similarly, a function f(x,y,z) is said to be homogeneous of degree n in the variables x,y,z if 




Alternative test is f(tx,ty,tz)=t" f(x,y,z)

Euler’s Theorem on Homogeneous Functions

If u is a homogeneous function of degree n in x and y, then x’;—’; + yg—; =

nu

Since u Is a homogeneous function of degree n in x and y , it can be
expressed asu = x™ f (ﬁ)

u_ 1) (-2

- =
"xZ—Zznx" G)—xnl}’f,(i) (©)
Also Z—;L= FHf (%) %_ it G)

Vo (=) (it)



Alternative test is f(tx,ty,tz)= tn f(x,y,z)



Euler’s Theorem on Homogeneous Functions

If u is a homogeneous function of degree n in x and y, then 

Since u is a homogeneous function of degree n in x and y , it can be expressed as 










- - .- ou ou Y\ _
Adding (1) and (i), we get X——+ Vs nx"f (x) = nu
2
If u is a Homogeneous function of degree n in x and y , then x?2 ZTZ +
d%u

azu 2 —~
Sty +vy W = n(n 1)u

LY A OE
\/._+\/._ ,prOve a x axz xy axay

A d%u sin u cos 2u
+ y a—yz= ==

Example 1.if u sin™!

4 cos3u
Composit functions
(Dif u= f(x,y) where x = 0(t),y = ¢(t)
Then u is called a composit function of t and we can find du/dt
(i) if z = f(x,y)where x = 0(u,v),y = @(u, v)
Then z is called a composite function of u and v so that we can find

aZ/ u and 62/ v



Adding (i) and (ii), we get 

If u is a Homogeneous function of degree n in x and y , then 



Composit functions



Then u is called a composit function of t and we can find du/dt



Then z is called a composite function of u and v so that we can find 


Cor. 1. If u=f(x,y,z) and x,y,z are function of t, then y is a composite function

du du dx du dy ou dz

of t and Ezax'dt-l_ay'dt-'_az s

Cor. 2. If z=f(x,y) and x and y are the functions of u and v, then
dz 0z Ox 0z 0y 0z 0z Ox 0z 0Oy
AT 0 O T, R R 00 % o
Cor. 3. If u=f(x,y) where y= @(x) then since x = ¢(x) , u Is a composite

function of x

du Odu dx_l_au dy _>du_ 0u+6u dy
dx 0x ‘dx 0y dx T dx  0x 09y dx




Cor. 1. If u=f(x,y,z) and x,y,z are function of t, then y is a composite function of t and 



Cor. 2. If z = f(x,y) and x and y are the functions of u and v, then



 Cor. 3. If u=f(x,y)  where y= then since x =  , u is a composite function of x 




Cor. 4. If we are given a implicit function f(x,y) = ¢, then u=f(x,y) where u=c

using cor. 3, we have
du Jdu Jdu dy

B o
But du/dx=0

6u+6u dy_O aof odf dy
ox 0dy dx

dx of fy

Hence the differential coefficient of f(x,y) w.r.t x is gi o2 ?; .ZZ




Cor. 4. If we are given a implicit function f(x,y) = c , then u=f(x,y) where u=c using cor. 3 , we have 



But du/dx=0





Hence the differential coefficient of f(x,y) w.r.t x is 


Cor 5. If f(x,y) = c, then by cor 4, we have

AT
dx fy
Dif ferentiating again w.r.t.x,we get
d d Ofe | Ofx dYI L9y dy
du B b lh) fYI t Oy ax]l " Fax oy dx
d2x fyz fyz

e S = e B
fZ

_f;cxfyz o f;cfyf;cy 27 f;cfyf;cy e fyyf;cz

f;
dzy A fxxfyz 0 fofyfxy = fyyfxz

Hence —=
de fy3




Cor 5. If f(x,y) = c, then by cor 4, we have 










Example 1.1f z = 2xy? — 3x%y and f increases at the rate of 2 cm per second when it

passes through the value x = 3cm, show that if y is passing through the value y = 1 cm,

74
y must be decreasing at the rate of 2 1c cm per second, in order that z shall remain constant.

Example 2.if uis a homogeneous function of nth degree in x,y, z, prove that

6u+ 6u+ Ju
ax Yoy %oz

X = nu

Example 3. Find d_ic]' when

(i) xY +y* =c (ii) (cosx)” = (siny)*




















NPTEL LINKS FOR REFERENCE

Partial derivatives | http://nptel.ac.in/courses/122101003/
31

Partial derivatves | www.nptel.ac.in/courses/12210100
and euler th. 3/downloads/Lecture-31.pdf.



http://nptel.ac.in/courses/122101003/31
http://www.nptel.ac.in/courses/122101003/downloads/Lecture-31.pdf

JOCOBIANS

If u and v are functions of two independent variables x and y, then the

ou du
determinant aaff (Z) Is called Jacobian of u,v with respect to X,y and is
ox ay
u,v d(u,v)
denoted by symbol J(x’y) OF )

Simolarly, if u,v,w be the function of x,y,z, then the Jacobian of u,v,w with
respect to x,y,z IS

du du u
dx dy 0z
u,v,w d(u,v,w) i dv dv dv
(x,y,z) P a(x,y,z) dx @ 0z
ow ow ow
ax y az



If u and v are functions of two independent variables x and y, then the determinant  is called Jacobian of u,v with respect to x,y and is denoted by symbol J

Simolarly, if u,v,w be the function of x,y,z, then the Jacobian of u,v,w with respect to x,y,z is 




Properties of JACOBIANS
1. 1f u,v are functions of r,s where r, s are functions of

X,Y, then
d(u,v)
2(x,y)
d(u,v) d(r,s) ; _
¢a e ) | chain Rule for Jacobians]
2. If J; Is the Jacobian of u,v, with respect to x,y and
J, 1S the Jacobian of x,y with respect to u,v, then J.J,

Iuv) _ d(xy) _
'I(xy) dwy)

=Y ¥

Example 1. If x = r sinf cos® ,z
a ) )
= rcos @ ,show that (x,y.2)
a(r,0,p)

— r2 s5in@



Properties of JACOBIANS

1. If u,v are functions of r,s where r, s are functions of x,y, then 



2.  If J1 is the Jacobian of u,v, with respect to x,y and J2 is the Jacobian of x,y with respect to u,v, then J1J2 =1  i.e., 






MAXIMA AND MINIMA OF FUNCTIONS OF TWO
VARIABLES

A function f(x,y) Is said to have a maximum
value at x = a, y = b if f(a,5) f(a+h,b+k), for
small and independent values of h and Kk,
positive or negative.

A function f(x,y) Is said to have a minimum
value atx =a, y =bif f(a,B) f(ath,b+k), for
small and independent values of h and Kk,
positive or negative.



RULE TO FIND THE EXTREME VALUES OF A
FUNCTION

Let z = f(x,y) be a function of two variables
() Find2= andz

(ii) Solvez= =0 and> =0 simultaneously.
Let (a,b); (c,d)..... Be the solutions of these
equations.

(iif) For each solution in step (ii), find r &=
R 8%z
S :aia}r , =057




(iv) () If rt s2 = 0 andr O for a particular
solution (a,b) of step (ii),then z has a maximum
value at (a,b).

(b)) Ifrts¢ = O anax O for a particular
solution (a,b) of step (ii),then z has a minimum
value at (a,b).

(c) If rts* < O for a particular solution (a,b)
of step (ii),then z has no extreme value at (a,b)

(d) If rt 5* =0, the case is doubtful and
requires further investigation.



ASSIGNMENT

1.Examine the extreme valuesof % +6x + 12

2. Find the points on the surface’ = xy + 1 nearest to the
origin.
3. Arectangular box open at the top, is to have a volume of

32 c.c. Find the dimensions of the box requiring least
material for its construction.

4. Divide 24 into three parts such that the continued product
of the first, square of the second and the cube of the third
may be maximum.



z2


Differentiation Under Integral SIGN

If a function f(x,a) of the two variables x and a, a being called
parameter, be integrated w.r.t. x between limits a and

b,f: f(x,a)dx is a function of a.for example,

T

jjsinadxz —[COOS(O(]Z/Z s —%(cosg a—l)

= %(1—005% 0()

b
thus in general j f(x,0)dx = F(x)
a



If a function f(x,α) of the two variables x and α, α being called  parameter, be integrated w.r.t. x between limits a and b,






Leibnitz's Rule
) _ _ d [P
If f(x,)and 5 [f (x, a)]be continous functions of x and a, then el U f(x, a)dx]

b
= f EP [f(x,0)] dx wiere a and b are constants independent of .
a

foe) tan"! ax

Example 1. Evaluate f m dx (a = 0)by applying dif ferentiation under the Integral sign.
0

“logifl + ax)
Example 2. evaluate f e

Log(1 + x)
= dx and hence show that f _
i

AR e

o)
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