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The Process of Differentiating a function again and again is called 
successive Differentiation. 

If y  be a function of x, then its successive derivatives are denoted by    

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  ,
𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2  ,

𝑑𝑑3𝑑𝑑
𝑑𝑑𝑑𝑑3  , … … … … … … … . ,

𝑑𝑑𝑛𝑛𝑑𝑑
𝑑𝑑𝑑𝑑𝑛𝑛

 

𝑑𝑑1,𝑑𝑑2,𝑑𝑑3, … … … … … … … … … ,𝑑𝑑𝑛𝑛  

𝑑𝑑′, 𝑑𝑑′′𝑑𝑑′′′, … … … … … … … … …𝑑𝑑𝑛𝑛  

Example 1. Find the fourth derivative of tan x at 𝑑𝑑 = 𝜋𝜋
4
 

Example 2. 𝑖𝑖𝑖𝑖 𝑑𝑑 = 𝐴𝐴𝑒𝑒𝑚𝑚𝑑𝑑 + 𝐵𝐵𝑒𝑒𝑛𝑛𝑑𝑑 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑑𝑑
2𝑑𝑑

𝑑𝑑𝑑𝑑2 − (𝑚𝑚 + 𝑛𝑛) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
𝑚𝑚𝑛𝑛𝑑𝑑 = 0  


The Process of Differentiating a function again and again is called successive Differentiation.

If y  be a function of x, then its successive derivatives are denoted by   







Example 1. Find the fourth derivative of tan x at 

Example 2. 



SOME STANDARD RESULTS
1. 𝑛𝑛𝑡𝑡ℎ  𝑑𝑑𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑎𝑎𝑡𝑡𝑖𝑖𝑃𝑃𝑒𝑒 𝑃𝑃𝑖𝑖 𝑑𝑑𝑚𝑚 = 𝑚𝑚 !

(𝑚𝑚−𝑛𝑛)!
𝑑𝑑𝑚𝑚−𝑛𝑛    𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚 > 𝑛𝑛. 

2. 𝑛𝑛𝑡𝑡ℎ  𝑑𝑑𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑎𝑎𝑡𝑡𝑖𝑖𝑃𝑃𝑒𝑒 𝑃𝑃𝑖𝑖 (𝑎𝑎𝑑𝑑 + 𝑏𝑏)𝑚𝑚 = 𝑚𝑚(𝑚𝑚 − 1)(𝑚𝑚 − 2) … … … … … … (𝑚𝑚 − 𝑛𝑛 +
1)(𝑎𝑎𝑑𝑑 + 𝑏𝑏)𝑚𝑚−𝑛𝑛    𝑎𝑎𝑛𝑛   𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚 > 𝑛𝑛. 

3. 𝐹𝐹𝑖𝑖𝑛𝑛𝑑𝑑 𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑡𝑡ℎ  𝑑𝑑𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑎𝑎𝑡𝑡𝑖𝑖𝑃𝑃𝑒𝑒 𝑃𝑃𝑖𝑖 1
𝑎𝑎𝑑𝑑+𝑏𝑏

= (−1)𝑛𝑛  𝑛𝑛 ! 𝑎𝑎𝑛𝑛

(𝑎𝑎𝑑𝑑−𝑏𝑏)𝑛𝑛+1   

4. 𝐹𝐹𝑖𝑖𝑛𝑛𝑑𝑑 𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑡𝑡ℎ  𝑑𝑑𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑎𝑎𝑡𝑡𝑖𝑖𝑃𝑃𝑒𝑒 𝑃𝑃𝑖𝑖𝑜𝑜𝑃𝑃𝑜𝑜(𝑎𝑎𝑑𝑑 + 𝑏𝑏) = (−1)𝑛𝑛−1(𝑛𝑛−1)!𝑎𝑎𝑛𝑛

(𝑎𝑎𝑑𝑑+𝑏𝑏)𝑛𝑛
 

5. 𝑛𝑛𝑡𝑡ℎ  𝑑𝑑𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑎𝑎𝑡𝑡𝑖𝑖𝑃𝑃𝑒𝑒 𝑃𝑃𝑖𝑖 𝑎𝑎𝑚𝑚𝑑𝑑 = 𝑚𝑚𝑛𝑛𝑎𝑎𝑚𝑚𝑑𝑑 (log𝑎𝑎)𝑛𝑛  
6. 𝑛𝑛𝑡𝑡ℎ  𝑑𝑑𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑎𝑎𝑡𝑡𝑖𝑖𝑃𝑃𝑒𝑒 𝑃𝑃𝑖𝑖 𝑒𝑒𝑚𝑚𝑑𝑑 = 𝑚𝑚𝑛𝑛𝑒𝑒𝑚𝑚𝑑𝑑  

7. 𝑛𝑛𝑡𝑡ℎ  𝑑𝑑𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑎𝑎𝑡𝑡𝑖𝑖𝑃𝑃𝑒𝑒 𝑃𝑃𝑖𝑖 sin(𝑎𝑎𝑑𝑑 + 𝑏𝑏) = 𝑎𝑎𝑛𝑛sin�𝑎𝑎𝑑𝑑 + 𝑏𝑏 + 𝑛𝑛 𝜋𝜋
2
� 

8. 𝑛𝑛𝑡𝑡ℎ  𝑑𝑑𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑎𝑎𝑡𝑡𝑖𝑖𝑃𝑃𝑒𝑒 𝑃𝑃𝑖𝑖 cos(𝑎𝑎𝑑𝑑 + 𝑏𝑏) = 𝑎𝑎𝑛𝑛cos�𝑎𝑎𝑑𝑑 + 𝑏𝑏 + 𝑛𝑛 𝜋𝜋
2
� 

9. 𝑛𝑛𝑡𝑡ℎ  𝑑𝑑𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑎𝑎𝑡𝑡𝑖𝑖𝑃𝑃𝑒𝑒 𝑃𝑃𝑖𝑖 eax sin(𝑏𝑏𝑑𝑑 + 𝑐𝑐) = (𝑎𝑎2 + 𝑏𝑏2)
𝑛𝑛
2𝑒𝑒𝑎𝑎𝑑𝑑 sin�𝑏𝑏𝑑𝑑 + 𝑐𝑐 +

𝑛𝑛𝑡𝑡𝑎𝑎𝑛𝑛−1 𝑏𝑏
𝑎𝑎
� 

10. 𝑛𝑛𝑡𝑡ℎ  𝑑𝑑𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑎𝑎𝑡𝑡𝑖𝑖𝑃𝑃𝑒𝑒 𝑃𝑃𝑖𝑖 eax cos(𝑏𝑏𝑑𝑑 + 𝑐𝑐) = (𝑎𝑎2 + 𝑏𝑏2)
𝑛𝑛
2𝑒𝑒𝑎𝑎𝑑𝑑 cos�𝑏𝑏𝑑𝑑 + 𝑐𝑐 +

𝑛𝑛𝑡𝑡𝑎𝑎𝑛𝑛−1 𝑏𝑏
𝑎𝑎
� 


1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 



Statement:- if y=uv where u and v are function of x, having derivative of nth order, 
then 

𝑑𝑑𝑛𝑛 = 𝑛𝑛𝐶𝐶0𝑢𝑢𝑛𝑛𝑃𝑃 + 𝑛𝑛𝐶𝐶1𝑢𝑢𝑛𝑛−1𝑃𝑃1 + 𝑛𝑛𝐶𝐶2𝑢𝑢𝑛𝑛−2𝑃𝑃2 + ⋯… … … . . +𝑛𝑛𝐶𝐶𝑃𝑃𝑢𝑢𝑛𝑛−𝑃𝑃𝑃𝑃𝑃𝑃
+ ⋯… … . . +𝑛𝑛𝐶𝐶𝑛𝑛 𝑢𝑢𝑃𝑃𝑛𝑛                

𝑤𝑤ℎ𝑒𝑒𝑃𝑃𝑒𝑒 𝑠𝑠𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑒𝑒𝑠𝑠 𝑑𝑑𝑒𝑒𝑛𝑛𝑃𝑃𝑡𝑡𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑒𝑒𝑃𝑃 𝑃𝑃𝑖𝑖 𝑑𝑑𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑎𝑎𝑡𝑡𝑖𝑖𝑃𝑃𝑒𝑒𝑠𝑠. 

 

Example 1. 𝐼𝐼𝑖𝑖 𝑑𝑑 = 𝑑𝑑𝑛𝑛 log 𝑑𝑑 ,𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑑𝑑𝑛𝑛+1 = 𝑛𝑛 !
𝑑𝑑

 

𝐸𝐸𝑑𝑑𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑒𝑒 2. 

𝐼𝐼𝑖𝑖 𝑑𝑑 = cos  (𝑚𝑚 log𝑑𝑑),𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑑𝑑2𝑑𝑑𝑛𝑛+2 + (2𝑛𝑛 + 1)𝑑𝑑𝑑𝑑𝑛𝑛+1 + (𝑚𝑚2 + 𝑛𝑛2)𝑑𝑑𝑛𝑛 = 0 

 

 

Leibnitz’s Theorem 


Statement:- if y=uv where u and v are function of x, having derivative of nth order, then







Example 1. 











LINK FOR REFERENCE

 Leibnitz’s Theorem for successive 
differentiation.

 https://www.youtube.com/watch?v=67uJGws
Zz-Q 



 The Taylor’s series is named after the 
English mathematician Brook Taylor 
(1685–1731).

 The Maclaurin’s series is named for the 
Scottish mathematician Colin Maclaurin
(1698–1746).

 This is despite the fact that the Maclaurin’s series
is really just a special case of the Taylor’s series.



APPLICATIONS OF TAYLOR’S AND 
MACLAURIN’S SERIES 

 Expressing the complicated functions in terms of 
simple polynomials.

 Complicated functions can be made smooth.
 Differentiation of the such functions can be 

done as often as we please.
 In the field of Ordinary Differential Equations when

finding series solution to Differential Equations.
 In the study of Partial Differential Equations.



GENERAL TAYLOR’S SERIES

(I) Expressing f(x + h) in ascending integral powers of h.

provided that all derivatives of f(x) are continuous and exist in the 
interval [x   x+h] 

(II) Expressing f(x) in ascending integral powers of (x – a)

𝑖𝑖(𝑑𝑑 + ℎ) = 𝑖𝑖(𝑑𝑑) +  ℎ𝑖𝑖ʹ(𝑑𝑑) + 
ℎ2

2!
𝑖𝑖ˈʹ(𝑑𝑑) + 

ℎ3

3!
𝑖𝑖ˈˈˈ(𝑑𝑑) + ⋯⋯ 

𝑖𝑖(𝑑𝑑) = 𝑖𝑖�𝑎𝑎 + (𝑑𝑑 − 𝑎𝑎)� 

 

=  𝑖𝑖(𝑎𝑎) + (𝑑𝑑 − 𝑎𝑎)𝑖𝑖ʹ(𝑎𝑎) +  
(𝑑𝑑 − 𝑎𝑎)2

2!
𝑖𝑖ˈʹ(𝑎𝑎) +  

(𝑑𝑑 − 𝑎𝑎)3

3!
𝑖𝑖ˈˈˈ(𝑎𝑎) +  ⋯⋯ 













GUIDELINES FOR FINDING TAYLOR SERIES

Expanding f(x) about x = a
Differentiate f(x) several times
Evaluate each derivative at x = a
Evaluate 

Substitute the above values in

𝑖𝑖(𝑑𝑑) =  𝑖𝑖(𝑎𝑎) + (𝑑𝑑 − 𝑎𝑎)𝑖𝑖ʹ(𝑎𝑎) +  
(𝑑𝑑 − 𝑎𝑎)2

2!
𝑖𝑖ˈʹ(𝑎𝑎) +  

(𝑑𝑑 − 𝑎𝑎)3

3!
𝑖𝑖ˈˈˈ(𝑎𝑎) +  ⋯⋯ 

 








Example:

Find the Taylor series for f(x) =  sin x at c = π/4

f(x) =  sin x 

f ’(x) =  cos x 

f ’’(x) =  - sin x 

f ’’’(x) =  - cos x 

f(4)(x) =  sinx 

2
4 2

f π  = 
 

2'
4 2

f π  = 
 

2''
4 2

f π  = − 
 

2'''
4 2

f π  = − 
 

(4) 2
4 2

f π  = 
 



Cont….

( )
2

0

( ) 2 2 2 2( ) ( ) ..... ( ) ....
! 2 2 4 2 2! 4 2 ! 4

n n
n

n

f x c x x x
n n

π π π∞

=

−
= + − − − − +

⋅
∑

2 3 4

2 4 4 41 ( ) ....
2 4 2! 3! !

x x x
x

n

π π π
π

      − − −      
      = + − − − + +

 
  

2 3 42 2 2 2 2( ) ( ) ( ) ( ) ....
2 2 4 2 2! 4 2 3! 4 2 4! 4

x x x xπ π π π
= + − − − − − + −

⋅ ⋅ ⋅

( ) ( )

0

( ) ( )( ) '( )( ) ..... ( ) ....
! !

n n n
n

n

f x c f cf c f c x c x c
n n

∞

=

−
= + − + − +∑



The Maclaurin’s series is simply the Taylor’s series 
about the point x = 0
It is given by 

𝒇𝒇(𝒙𝒙) = 𝒇𝒇(𝟎𝟎) +  𝒙𝒙𝒇𝒇ʹ(𝟎𝟎) + 
𝒙𝒙𝟐𝟐

𝟐𝟐! 𝒇𝒇ˈʹ
(𝟎𝟎) + 

𝒙𝒙𝟑𝟑

𝟑𝟑! 𝒇𝒇ˈˈˈ
(𝟎𝟎) +  ⋯⋯ 

MACLAURIN’S SERIES






Find the Maclaurin’s series for f(x) =  ln(x2 + 1)
2( ) ln( 1)f x x= + (0) 0f =

2

2'( )
1

xf x
x

=
+

'(0) 0f =

2

2 2

2 2''( )
( 1)

xf x
x
−

=
+

''(0) 2f =

2

2 3

4 ( 3)'''( )
( 1)
x xf x
x

−
=

+
'''(0) 0f =

4 2
(4)

2 4

12( 6 1)( )
( 1)
x xf x
x

− + −
=

+

(4) (0) 12f = −

4 2
(5)

2 5

48 ( 10 5)( )
( 1)

x x xf x
x
− +

=
+

(5) (0) 0f =



Cont….
0(0)f =
0'(0)f =
2''(0)f =

'''( 00)f =
(4) (0 2) 1f = −

4 2
(5)

2 5

48 ( 10 5)( )
( 1)

x x xf x
x
− +

=
+ (5) ( 00)f =

6 4 2
(6)

2 6

240(5 15 15 1)( )
( 1)

x x xf x
x

− − + −
=

+

(6) (0 4) 2 0f =

( ) ( )
2

0

''(0) (0)(0) '(0) ..... ....
! 2! !

n n n
n

n

f x f ff f x x x
n n

∞

=

= + + +∑

2 3 4 5 62 0 12 0 240 .........
2

0
! 3! 4! 5! 6!

0 x x x x x= + + + + +
−

+

4 6
2 4 .........

2 3
x xx x= − +

2 2

0

( 1)
1

n n

n

x
n

+∞

=

−
=

+
∑



Find the Taylor series for f(x) =  e–2x at c = 0

f(x) =  e–2x f(0) =  1 

f ’(x) =  -2e–2x f ’(0) =  -2

f ’’(x) =  4e–2x f ’’(0) =  4 

f ’’’(x) =  -8e–2x f ’’’(0) =  -8 

f(4)(x) =  16e–2x f(4)(0) =  16

( ) ( )
2

0

''(0) (0)(0) '(0) ..... ....
! 2! !

n n n
n

n

f x f ff f x x x
n n

∞

=

= + + +∑
2 34 8 21 2 ...... ...

2! 3! !

n nx x xx
n

= − + − + +

0

( 2 )
!

n

n

x
n

∞

=

−
= ∑



MACLAURIN’S SERIES

We defined:

 the nth Maclaurin polynomial for a function as

 the nth Taylor polynomial for f about x = x0 as

n
n

k
n

k

k

xx
n

xfxxxfxxxfxfxx
k

xf )(
!

)(...)(
!2

)())(()()(
!

)(
0

02
0

0
//

00
/

00
0

0 −++−+−+=−∑
=

n
n

k
n

k

k

x
n

fxfxffx
k

f
!

)0(...
!2

)0()0()0(
!

)0( 2
//

/

0
++++=∑

=



DERIVATION FOR MACLAURIN SERIES FOR 

Derive the Maclaurin series

++++=
!3!2

1
32 xxxex

The Maclaurin series is simply the Taylor series about  the point x=0

( ) ( ) ( ) ( ) ( ) ( ) ( ) +′′′′′+′′′′+′′′+′′+′+=+
54!3!2

5432 hxfhxfhxfhxfhxfxfhxf

( ) ( ) ( ) ( ) ( ) ( ) ( ) +′′′′′+′′′′+′′′+′′+′+=+
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DERIVATION (CONT.)
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Since xnxxx exfexfexfexf ==′′=′= )( , ... , )(  , )( , )( and

1)0( 0 == ef n

the Maclaurin series is then

...
!3
)(

!2
)()()()( 3

0
2

0
00 heheheehf +++=

...
!3

1
!2

11 32 hhh +++=

So,

...
!3!2

1)(
32

++++=
xxxxf



Find the Maclaurin polynomial for f(x) = x cos x

f(x) =  cos x f(0) =  1 

f ’(x) =  -sin x f ’(0) =  0

f ’’(x) =  - cos x f ’’(0) =  - 1

f ’’’(x) =  sin x f ’’’(0) =  0 

f(4)(x) =  cos x f(4)(0) =  1
( )

2''(0) (0)cos (0) '(0) ..... ....
2! !

n
nf fx f f x x x

n
= + + +

2 441 0 0 . .....
2! 4!
x x

= + − − +

2 1

0

( 1)
(2 )!

n n

n

x
n

+∞

=

−
= ∑

We find the Maclaurin polynomial cos x and multiply by x

2 4 6

1 .....
2! 4! 6!
x x x

= − + −
3 5 7

cos .....
2! 4! 6!
x x xx x x= − + −



Find the Maclaurin polynomial for f(x) = sin 3x

f(x) =  sin x f(0) =  0 

f ’(x) =  cos x f ’(0) =  1

f ’’(x) =  - sin x f ’’(0) =  0

f ’’’(x) =  - cos x f ’’’(0) =  -1 

f(4)(x) =  sin x f(4)(0) =  0
( )

2''(0) (0)sin (0) '(0) ..... ....
2! !

n
nf fx f f x x x

n
= + + +

3

0 0 0.....
3!
xx= + + − +

2 1

0

( 1) (3 )
(2 1)!

n n

n

x
n

+∞

=

−
=

+
∑

We find the Maclaurin polynomial sin x and replace x by 3x

3 5 7

.....
3! 5! 7!
x x xx= − + −

3 5 73 3( ) ( ) ( )sin3 ....3 .
3 5! 7!

3
!

x x xxx = − + −



 Taylor’s & Maclaurin’s Theorem for one 
variable.

 http://nptel.ac.in/courses/122104017/11

 http://www.creativeworld9.com/2011/02/iit-
guest-lecture-mathematics-iii-video.html

http://nptel.ac.in/courses/122104017/11
http://www.creativeworld9.com/2011/02/iit-guest-lecture-mathematics-iii-video.html


Definition: An asymptote of a curve is a line such that the distance between 
the curve and the line approaches zero as they tend to infinity. In other 
words.. 

A Straight line at a finite distance from the origin, is said to be an asymptote 
of an infinite branch of a curve, if the perpendicular distance of a point P 
on that branch from the straight line tends to zero as P tends to infinity 
along the branch of the curve. 
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Definition: An asymptote of a curve is a line such that the distance between the curve and the line approaches zero as they tend to infinity. In other words..

A Straight line at a finite distance from the origin, is said to be an asymptote of an infinite branch of a curve, if the perpendicular distance of a point P on that branch from the straight line tends to zero as P tends to infinity along the branch of the curve.
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A Curve With Finite Branches A Curve With Infinite Branches
Ellipse : Hyperbola :

 
𝒙𝒙𝟐𝟐

𝒂𝒂𝟐𝟐
+ 𝒚𝒚𝟐𝟐

𝒃𝒃𝟐𝟐
= 𝟏𝟏           Its two branches are 

 
 

    y=   b �𝟏𝟏 − 𝒙𝒙𝟐𝟐

𝒂𝒂𝟐𝟐
   and  y= -b�𝟏𝟏 − 𝒙𝒙𝟐𝟐

𝒂𝒂𝟐𝟐
       

(upper half)                    (lower half) 
(Both branches lie within x=a,x= -a ,y=b , 
y=-b.) 
          

 

𝒙𝒙𝟐𝟐

𝒂𝒂𝟐𝟐
−
𝒚𝒚𝟐𝟐

𝒃𝒃𝟐𝟐
= 𝟏𝟏 

  
Its infinite branches are 

𝒚𝒚 = 𝒃𝒃
𝒂𝒂
√𝒙𝒙𝟐𝟐 − 𝒂𝒂𝟐𝟐,    𝒚𝒚 = −𝒃𝒃

𝒂𝒂
√𝒙𝒙𝟐𝟐 − 𝒂𝒂𝟐𝟐  

       (Here 𝒚𝒚 → ±∞    as  𝒙𝒙 → ±∞) 
    

 


            Its two branches are





    y=   b    and  y= -b      

(upper half)                    (lower half)

(Both branches lie within x=a,x= -a ,y=b ,

y=-b.)

         

[image: Image result for image of ellipse]
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Its infinite branches are

,     

       (Here     as  )

   

[image: ... vzdáleností. ( hyperbola-Cabri II plus , hyperbola-Cabri II]
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KINDS OF ASYMPTOTES



ASYMPTOTE PARALLEL TO AXES
Asymptote Parallel to x-axis 

Rule to find the asymptote || to X-axis, is to equate to zero the real linear 
factors in the co-efficient of the highest power of x in the equation of the 
curve. 

Asymptote Parallel to y-axis 

Rule to find the asymptote || to Y-axis, is to equate to zero the real linear 
factors in the co-efficient of the highest power of y in the equation of the 
curve. 

𝐸𝐸𝑑𝑑𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑒𝑒 1.𝐹𝐹𝑖𝑖𝑛𝑛𝑑𝑑 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑2𝑑𝑑2 − 𝑎𝑎2(𝑑𝑑2 + 𝑑𝑑2) − 𝑎𝑎3(𝑑𝑑 + 𝑑𝑑)
+ 𝑎𝑎4𝐴𝐴𝑠𝑠𝑚𝑚𝑝𝑝𝑡𝑡𝑃𝑃𝑡𝑡𝑒𝑒 𝑃𝑃𝑎𝑎𝑃𝑃𝑎𝑎𝑜𝑜𝑜𝑜𝑒𝑒𝑜𝑜 𝑡𝑡𝑃𝑃 𝑎𝑎𝑑𝑑𝑒𝑒𝑠𝑠 

𝐸𝐸𝑑𝑑𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑒𝑒 6.𝐹𝐹𝑖𝑖𝑛𝑛𝑑𝑑 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑2𝑑𝑑2 − 𝑑𝑑2𝑑𝑑 − 𝑑𝑑𝑑𝑑2 + 𝑑𝑑 + 𝑑𝑑 + 1
= 0 𝐴𝐴𝑠𝑠𝑚𝑚𝑝𝑝𝑡𝑡𝑃𝑃𝑡𝑡𝑒𝑒 𝑃𝑃𝑎𝑎𝑃𝑃𝑎𝑎𝑜𝑜𝑜𝑜𝑒𝑒𝑜𝑜 𝑡𝑡𝑃𝑃 𝑎𝑎𝑑𝑑𝑒𝑒𝑠𝑠 

The equation of straight line y=mx+c is the oblique asymptote to the given 
curve  

Oblique Asymptote


Asymptote Parallel to x-axis

Rule to find the asymptote || to X-axis, is to equate to zero the real linear factors in the co-efficient of the highest power of x in the equation of the curve.

Asymptote Parallel to y-axis

Rule to find the asymptote || to Y-axis, is to equate to zero the real linear factors in the co-efficient of the highest power of y in the equation of the curve.






The equation of straight line y=mx+c is the oblique asymptote to the given curve 



WORKING RULE FOR FINDING OBLIQUE 
ASYMPTOTES OF AN ALGEBRAIC CURVE 
OF THE NTH DEGREE

1. Find the ∅𝑛𝑛(𝑚𝑚). This can be obtained by putting x=1, y=m in the 
highest degree terms of the given equation of the curve. 

2. Equate ∅𝑛𝑛(𝑚𝑚) to zero and solve for m. 
Let its roots be m1,m2,m3,……….. 

3. Find ∅𝑛𝑛−1(𝑚𝑚) by putting x=1 and y=m in the next lower terms of 
the equation. Similarly ∅𝑛𝑛−2(𝑚𝑚) may be found out by putting x=1 
and y=m in the next lower degree terms in the curve and so on. 

4. Find the values of c1,c2,c3,……………….. corresponding to the 
values  m1,m2,m3,………..by using equation 𝑐𝑐 = ∅𝑛𝑛−1(𝑚𝑚)

∅𝑛𝑛′ (𝑚𝑚)
 

5. Then the required asymptotes are y= m1x+c1 ,y= 
m2+c2,………………….. 


1. Find the . This can be obtained by putting x=1, y=m in the highest degree terms of the given equation of the curve.

2. Equate  to zero and solve for m.

Let its roots be m1,m2,m3,………..

3. Find  by putting x=1 and y=m in the next lower terms of the equation. Similarly  may be found out by putting x=1 and y=m in the next lower degree terms in the curve and so on.

4. Find the values of c1,c2,c3,……………….. corresponding to the values  m1,m2,m3,………..by using equation 

5. Then the required asymptotes are y= m1x+c1 ,y= m2+c2,…………………..



6. If ∅𝑛𝑛′ (𝑚𝑚) = 0 𝑖𝑖𝑃𝑃𝑃𝑃 𝑠𝑠𝑃𝑃𝑚𝑚𝑒𝑒 𝑃𝑃𝑎𝑎𝑜𝑜𝑢𝑢𝑒𝑒 𝑃𝑃𝑖𝑖 𝑚𝑚 𝑎𝑎𝑛𝑛𝑑𝑑 ∅𝑛𝑛−1(𝑚𝑚) ≠ 0corressponding 
to that value, then there will be no asymptote corresponding to that value 
of m. 

7. If ∅𝑛𝑛′ (𝑚𝑚) = 0 and ∅𝑛𝑛−1(𝑚𝑚) ≠ 0 for some value of m, the value of c are 
determined by  

𝑐𝑐2

2!
∅𝑛𝑛′′ (𝑚𝑚) + 𝑐𝑐∅𝑛𝑛−1

′ (𝑚𝑚) + ∅𝑛𝑛−2(𝑚𝑚) = 0, 

And this will determine two value of c and thus we shall have two parallel 
asymptotes corresponding to this value of m. 


6. If corressponding to that value, then there will be no asymptote corresponding to that value of m.

7. If  and  for some value of m, the value of c are determined by 



And this will determine two value of c and thus we shall have two parallel asymptotes corresponding to this value of m.



𝐸𝐸𝑑𝑑𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑒𝑒 1.𝐹𝐹𝑖𝑖𝑛𝑛𝑑𝑑 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑠𝑠𝑑𝑑𝑚𝑚𝑡𝑡𝑃𝑃𝑡𝑡𝑒𝑒 𝑃𝑃𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑢𝑢𝑃𝑃𝑃𝑃𝑒𝑒 (𝑑𝑑 − 𝑑𝑑)2(𝑑𝑑 + 2𝑑𝑑 − 1)
= 3𝑑𝑑 + 𝑑𝑑 − 7 

𝐸𝐸𝑑𝑑𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑒𝑒 2.𝐹𝐹𝑖𝑖𝑛𝑛𝑑𝑑 𝑎𝑎𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑠𝑠𝑑𝑑𝑚𝑚𝑡𝑡𝑃𝑃𝑡𝑡𝑒𝑒 𝑃𝑃𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑃𝑃𝑜𝑜𝑜𝑜𝑃𝑃𝑤𝑤𝑖𝑖𝑛𝑛𝑜𝑜 𝑐𝑐𝑢𝑢𝑃𝑃𝑃𝑃𝑒𝑒 

(𝑖𝑖)𝑑𝑑2(𝑑𝑑 − 2𝑎𝑎) = 𝑑𝑑3 − 𝑎𝑎3 

(𝑖𝑖𝑖𝑖)𝑑𝑑3 − 2𝑑𝑑𝑑𝑑2 − 𝑑𝑑2𝑑𝑑 + 2𝑑𝑑3 + 3𝑑𝑑2 − 7𝑑𝑑𝑑𝑑 + 2𝑑𝑑2 + 2𝑑𝑑 + 2𝑑𝑑 + 1 = 0 

(𝑖𝑖𝑖𝑖𝑖𝑖)𝑑𝑑3 − 𝑑𝑑𝑑𝑑2 − 𝑑𝑑2𝑑𝑑 + 𝑑𝑑3 + 𝑑𝑑2 − 𝑑𝑑2 = 0  

𝐸𝐸𝑑𝑑𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑒𝑒 3. 𝑠𝑠ℎ𝑃𝑃𝑤𝑤 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑠𝑠𝑑𝑑𝑚𝑚𝑝𝑝𝑡𝑡𝑃𝑃𝑡𝑡𝑒𝑒𝑠𝑠 𝑃𝑃𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑢𝑢𝑃𝑃𝑃𝑃𝑒𝑒 𝑑𝑑2𝑑𝑑2 − 𝑎𝑎2(𝑑𝑑2 + 𝑑𝑑2)
− 𝑎𝑎3(𝑑𝑑 + 𝑑𝑑) + 𝑎𝑎4 = 0  

Form the square through two of whose vertices the curve passes. 














Form the square through two of whose vertices the curve passes.



PICTORIAL   EXAMPLE  1
graphed on Cartesian coordinates.

The x and y-axes are the asymptotes of the curve.

https://en.wikipedia.org/wiki/Cartesian_coordinates


PICTORIAL   EXAMPLE  2
The graph of  

y = x is the Asymptote



PICTORIAL   EXAMPLE  3
The graph of  x2 + y2 = (xy)2, with 2 horizontal and 2 
vertical asymptotes



PICTORIAL   EXAMPLE  4
The graph of  

The y-axis (x = 0) and the line y = x are both 
asymptotes



PICTORIAL   EXAMPLE  5
The graph of  x3 + y3 = 3axy  

A cubic curve, the folium of Descartes (solid) with 
a single real asymptote (dashed) given by x + y + a 
= 0.



PICTORIAL   EXAMPLE  5
The graph of  x3 + y3 = 3axy  

A cubic curve, the folium of Descartes (solid) with 
a single real asymptote (dashed) given by x + y + a 
= 0.



PICTORIAL   EXAMPLE  6
The graph of  Hyperbola 

Its asymptotes are y = ±



ASYMPTOTE OF THE POLAR CURVES

𝐼𝐼𝑖𝑖 𝛼𝛼 𝑖𝑖𝑠𝑠 𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 𝑃𝑃𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑢𝑢𝑎𝑎𝑡𝑡𝑖𝑖𝑃𝑃𝑛𝑛 𝑖𝑖(𝜃𝜃)
= 0, 𝑡𝑡ℎ𝑒𝑒𝑛𝑛  𝑃𝑃 sin(𝜃𝜃 − 𝛼𝛼)

=
1

𝑖𝑖′(𝛼𝛼)
 𝑖𝑖𝑠𝑠 𝑎𝑎𝑛𝑛 𝑎𝑎𝑠𝑠𝑑𝑑𝑚𝑚𝑝𝑝𝑃𝑃𝑡𝑡𝑒𝑒 𝑃𝑃𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑃𝑃𝑜𝑜𝑎𝑎𝑃𝑃 𝑐𝑐𝑢𝑢𝑃𝑃𝑃𝑃𝑒𝑒 

1
𝑃𝑃

= 𝑖𝑖(𝜃𝜃)  

 

Working rule for finding the asymptotes of polar curves. 

1. Write down the given equation as  1
𝑃𝑃

= 𝑖𝑖(𝜃𝜃) 

2. Equate 𝑖𝑖(𝜃𝜃) to zero and solve for 𝜃𝜃 = 𝜃𝜃1,𝜃𝜃2,𝜃𝜃3, … … … … .. 
3. Find 𝑖𝑖′(𝜃𝜃) and calculate 𝑖𝑖′(𝜃𝜃) at 𝜃𝜃 = 𝜃𝜃1,𝜃𝜃2,𝜃𝜃3, … … … … .. 
4. Then write asymptote as 𝑃𝑃 sin(𝜃𝜃 − 𝜃𝜃1) = 1

𝑖𝑖′ (𝜃𝜃1)
, 𝑃𝑃 sin(𝜃𝜃 − 𝜃𝜃2) =

1
𝑖𝑖′ (𝜃𝜃2)

,…………………… 






Working rule for finding the asymptotes of polar curves.

1. Write down the given equation as

2. Equate  to zero and solve for 

3. Find  and calculate  at 

4. Then write asymptote as ……………………



IMPORTANT FORMULAS
1. 𝐼𝐼𝑖𝑖 sin(𝜃𝜃) = 0, 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝜃𝜃 = 𝜋𝜋

4
� 

2. 𝐼𝐼𝑖𝑖𝑐𝑐𝑃𝑃𝑠𝑠𝜃𝜃 = 0, 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝜃𝜃 = (2𝑛𝑛 + 1) 𝜋𝜋
2
 

3. 𝐼𝐼𝑖𝑖𝑠𝑠𝑖𝑖𝑛𝑛𝜃𝜃 = 𝑠𝑠𝑖𝑖𝑛𝑛𝛼𝛼 , 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝜃𝜃 = 𝑛𝑛𝜋𝜋 + (−1)𝑛𝑛𝛼𝛼 
4. 𝐼𝐼𝑖𝑖𝑐𝑐𝑃𝑃𝑠𝑠𝜃𝜃 = 𝑐𝑐𝑃𝑃𝑠𝑠𝛼𝛼 , 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝜃𝜃 = 2𝑛𝑛𝜋𝜋 ± 𝛼𝛼                         𝑛𝑛 ∈ I 
5. 𝐼𝐼𝑖𝑖𝑡𝑡𝑎𝑎𝑛𝑛𝜃𝜃 = 𝑡𝑡𝑎𝑎𝑛𝑛𝛼𝛼 , 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝜃𝜃 = 𝑛𝑛𝜋𝜋 + 𝛼𝛼 
6. sin(𝑛𝑛𝜋𝜋 + 𝜃𝜃) = (−1)𝑛𝑛 sin𝜃𝜃 
7. cos(𝑛𝑛𝜋𝜋 + 𝜃𝜃) = (−1)𝑛𝑛 cos𝜃𝜃 
8. tan(𝑛𝑛𝜋𝜋 + 𝜃𝜃) =  𝑡𝑡𝑎𝑎𝑛𝑛 𝜃𝜃 

 
 
𝐸𝐸𝑑𝑑𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑒𝑒  𝑖𝑖𝑖𝑖𝑛𝑛𝑑𝑑 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑠𝑠𝑑𝑑𝑚𝑚𝑝𝑝𝑡𝑡𝑃𝑃𝑡𝑡𝑒𝑒𝑠𝑠 𝑃𝑃𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑃𝑃𝑜𝑜𝑜𝑜𝑃𝑃𝑤𝑤𝑖𝑖𝑛𝑛𝑜𝑜 𝑝𝑝𝑃𝑃𝑜𝑜𝑎𝑎𝑃𝑃 𝑐𝑐𝑢𝑢𝑃𝑃𝑃𝑃𝑒𝑒𝑠𝑠 
(𝑖𝑖)𝑃𝑃 = 𝑎𝑎 tan𝜃𝜃 
(𝑖𝑖𝑖𝑖)𝑃𝑃 sin𝜃𝜃 = 2 cos 2𝜃𝜃 


1. 

2. 

3. 

4.                          

5. 

6. 

7. 

8. 













Derivative of a function

Single-Variable Function

Recall how we find the 
derivative for a Single 
Variable function f(x)

h
xfhxf

dx
df

h

)()(lim
0

−+
=

→

Rate of 
change of f 
with respect 
to x (slope)

Two-Variable Function

x y

f(x,y)

Rate of change of f with respect to x
Rate of change of f with respect to y



Partial derivatives of a function

x y

f(x,y)

Rate of change of f with respect to x
Rate of change of f with respect to y

k
yxfkyxf

y
f

h
yxfyhxf

x
f

k

h

),(),(lim

),(),(lim

0

0

−+
=

∂
∂

−+
=

∂
∂

→

→

Remarks:
•It is called the Partial Derivative
because it describes the derivative 
in one direction.
•Scripted “d”, not the regular “d” or 
“2”
•When differentiate f with respect to 
x, we treat y as if y were a constant, 
and vice versa.

Partial Derivative of f with respect to x
Partial Derivative of f with respect to y



Ex: Given f(x,y) = x³ - x²y + xy + 3y²

yxyx
yxyx

y
x

x
x

yx
x

yx
x

yxyyxx
xx

f

+−=

++−=
∂
∂

+
∂
∂

+
∂
∂

−
∂
∂

=

++−
∂
∂

=
∂
∂

23
0)1()2(3

²)3()(²)(³)(

²)3²³(

2

2

x
f
∂
∂     Find HERE: we treat “y” as a constant!!!!



If 

find

Assignment

w = x2 − xy + y2 + 2yz + 2z2 + z,

∂w
∂x

,    ∂w
∂y

,    and   ∂w
∂z

.



46

Example:  A cellular phone company has the 
following production function for a certain product:

where p is the number of units produced 
with x units of labor 
and y units of capital.

a) Find the number of units produced with 125 units of 
labor and 64 units of capital. 

b) Find the marginal productivities of labor and of 
capital.

c) Evaluate the marginal productivities at x = 125 
and y = 64.

p(x, y) = 50x2 3y1 3,
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Higher-Order Derivatives
Single-Variable 

Function

)derivative (3rd

)derivative (2nd

e)(derivativ

3

3

2

2

)('''

)(''

)('

dx
fdxf

dx
fdxf

dx
dfxf

=

=

=

Multi-Variable 
Function

 wrt x)f of derivative partial (3rd

 wrt x)f of derivative partial (2nd

 wrt x)f of derivative (partial

3

3

2

2

x
ff

x
ff

x
ff

xxx

xx

x

∂
∂

=

∂
∂

=

∂
∂

=



Ex: Given f(x,y) = x³ - x²y + xy + 3y²

yxyx
x
ff x +−=
∂
∂

= 23 2   found We

48

        Find xxxxf

2

2

y
f

∂
∂     Find
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( )

( )
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f

y
f
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x
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x
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y
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∂∂
∂

=
∂
∂

∂
∂

=







∂
∂

==

∂∂
∂

=
∂
∂

∂
∂
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∂
∂
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2

2
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so yxxy ff =

Mixed Derivatives



If 
find the following partial derivatives: 

Assignment

z = f (x, y) = x2y3 + x4 y + xey ,

=

=

=

=
=
=

yx

yy

y

xy

xx

x

f
f
f
f
f
f



A Function f(x,y) is said to be homogeneous of degree (or order) n in the variables x 

and y if it can be expressed in the form 𝑑𝑑𝑛𝑛  ∅�𝑑𝑑
𝑑𝑑
� 𝑃𝑃𝑃𝑃 𝑑𝑑𝑛𝑛  ∅�𝑑𝑑

𝑑𝑑  
�   

An alternative test for a function f(x,y) to be homogeneous of degree (or order ) n is that  

𝑖𝑖(𝑡𝑡𝑑𝑑, 𝑡𝑡𝑑𝑑) = 𝑡𝑡𝑛𝑛𝑖𝑖(𝑑𝑑, 𝑑𝑑) 

For example, if 𝑖𝑖(𝑑𝑑,𝑑𝑑) = 𝑑𝑑+𝑑𝑑
√𝑑𝑑+√𝑑𝑑

  , then 

(𝑖𝑖) 𝑖𝑖(𝑑𝑑, 𝑑𝑑) =
𝑑𝑑(1 + 𝑑𝑑

𝑑𝑑)

√𝑑𝑑(1 + �𝑑𝑑𝑑𝑑

= 𝑑𝑑1
2� ∅ �

𝑑𝑑
𝑑𝑑� 

             f(x,y) is a homogeneous function of degree ½ in x and y. 

Similarly, a function f(x,y,z) is said to be homogeneous of degree n in the variables 
x,y,z if  

𝑖𝑖(𝑑𝑑, 𝑑𝑑, 𝑧𝑧) = 𝑑𝑑𝑛𝑛∅ �
𝑑𝑑
𝑧𝑧 ,
𝑧𝑧
𝑑𝑑�       𝑃𝑃𝑃𝑃       𝑑𝑑𝑛𝑛(∅) �

𝑑𝑑
𝑑𝑑 ,
𝑧𝑧
𝑑𝑑�         𝑃𝑃𝑃𝑃                   𝑧𝑧𝑛𝑛∅ �

𝑑𝑑
𝑧𝑧 ,
𝑑𝑑
𝑧𝑧� 


A Function f(x,y) is said to be homogeneous of degree (or order) n in the variables x and y if it can be expressed in the form  

An alternative test for a function f(x,y) to be homogeneous of degree (or order ) n is that 



For example, if   , then



             f(x,y) is a homogeneous function of degree ½ in x and y.

Similarly, a function f(x,y,z) is said to be homogeneous of degree n in the variables x,y,z if 





Alternative test is f(tx,ty,tz)= tn f(x,y,z) 

 

Euler’s Theorem on Homogeneous Functions 

If u is a homogeneous function of degree n in x and y, then 𝑑𝑑 𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

+ 𝑑𝑑 𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

=

𝑛𝑛𝑢𝑢 

Since u is a homogeneous function of degree n in x and y , it can be 

expressed as 𝑢𝑢 = 𝑑𝑑𝑛𝑛  𝑖𝑖 �𝑑𝑑
𝑑𝑑
� 

𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

= 𝑛𝑛𝑑𝑑𝑛𝑛−1 𝑖𝑖�𝑑𝑑𝑑𝑑� =  𝑑𝑑𝑛𝑛𝑖𝑖′ �𝑑𝑑𝑑𝑑� �− 𝑑𝑑𝑑𝑑2� 

𝑑𝑑 𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

= 𝑛𝑛𝑑𝑑𝑛𝑛  𝑖𝑖 �𝑑𝑑
𝑑𝑑
� −  𝑑𝑑𝑛𝑛−1 𝑑𝑑 𝑖𝑖′ �𝑑𝑑

𝑑𝑑
�                                        (𝑖𝑖) 

𝐴𝐴𝑜𝑜𝑠𝑠𝑃𝑃             
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

=  𝑑𝑑𝑛𝑛  𝑖𝑖′ �
𝑑𝑑
𝑑𝑑
�  

1
𝑑𝑑

=  𝑑𝑑𝑛𝑛−1𝑖𝑖′ �
𝑑𝑑
𝑑𝑑
� 

𝑑𝑑
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

=  𝑑𝑑𝑛𝑛−1 𝑑𝑑 𝑖𝑖′ �
𝑑𝑑
𝑑𝑑
�                                                          (𝑖𝑖𝑖𝑖) 


Alternative test is f(tx,ty,tz)= tn f(x,y,z)



Euler’s Theorem on Homogeneous Functions

If u is a homogeneous function of degree n in x and y, then 

Since u is a homogeneous function of degree n in x and y , it can be expressed as 











Adding (i) and (ii), we get 𝑑𝑑 𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

+  𝑑𝑑 𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

= 𝑛𝑛𝑑𝑑𝑛𝑛𝑖𝑖 �𝑑𝑑
𝑑𝑑
� = 𝑛𝑛𝑢𝑢 

If u is a Homogeneous function of degree n in x and y , then 𝑑𝑑2 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑑𝑑2 +

2𝑑𝑑𝑑𝑑 𝜕𝜕
2𝑢𝑢

𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑
+ 𝑑𝑑2 𝜕𝜕2𝑢𝑢

𝜕𝜕𝑑𝑑2 = 𝑛𝑛(𝑛𝑛 − 1)𝑢𝑢 

 𝐸𝐸𝑑𝑑𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑒𝑒 1. 𝑖𝑖𝑖𝑖 𝑢𝑢 sin−1 𝑑𝑑 + 𝑑𝑑
√𝑑𝑑 + �𝑑𝑑

 ,𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑑𝑑2 𝜕𝜕
2𝑢𝑢
𝜕𝜕𝑑𝑑2 + 2𝑑𝑑𝑑𝑑 

𝜕𝜕2𝑢𝑢  
𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑

                

+  𝑑𝑑2 𝜕𝜕
2𝑢𝑢
𝜕𝜕𝑑𝑑2 =  −  

sin𝑢𝑢 cos 2𝑢𝑢 
4 𝑐𝑐𝑃𝑃𝑠𝑠3𝑢𝑢

 

Composit functions 

(𝑖𝑖)𝑖𝑖𝑖𝑖 𝑢𝑢 = 𝑖𝑖(𝑑𝑑,𝑑𝑑) 𝑤𝑤ℎ𝑒𝑒𝑃𝑃𝑒𝑒 𝑑𝑑 = ∅(𝑡𝑡),𝑑𝑑 = 𝜑𝜑(𝑡𝑡) 

Then u is called a composit function of t and we can find du/dt 

(𝑖𝑖𝑖𝑖) 𝑖𝑖𝑖𝑖 𝑧𝑧 = 𝑖𝑖(𝑑𝑑,𝑑𝑑)𝑤𝑤ℎ𝑒𝑒𝑃𝑃𝑒𝑒 𝑑𝑑 = ∅(𝑢𝑢, 𝑃𝑃),𝑑𝑑 = 𝜑𝜑(𝑢𝑢, 𝑃𝑃) 

Then z is called a composite function of u and v so that we can find 
𝜕𝜕𝑧𝑧

𝜕𝜕𝑢𝑢   � 𝑎𝑎𝑛𝑛𝑑𝑑 𝜕𝜕𝑧𝑧 𝜕𝜕𝑃𝑃�  


Adding (i) and (ii), we get 

If u is a Homogeneous function of degree n in x and y , then 



Composit functions



Then u is called a composit function of t and we can find du/dt



Then z is called a composite function of u and v so that we can find 



Cor. 1. If u=f(x,y,z) and x,y,z are function of t, then y is a composite function 
of t and                       𝑑𝑑𝑢𝑢

𝑑𝑑𝑡𝑡
=  𝜕𝜕𝑢𝑢

𝜕𝜕𝑑𝑑
 . 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

+ 𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

 . 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

+ 𝜕𝜕𝑢𝑢
𝜕𝜕𝑧𝑧

 . 𝑑𝑑𝑧𝑧
𝑑𝑑𝑡𝑡

 

 
Cor. 2. If z = f(x,y) and x and y are the functions of u and v, then 

𝜕𝜕𝑧𝑧
𝜕𝜕𝑢𝑢

=
𝜕𝜕𝑧𝑧
𝜕𝜕𝑑𝑑

.
𝜕𝜕𝑑𝑑
𝜕𝜕𝑢𝑢

+ 
𝜕𝜕𝑧𝑧
𝜕𝜕𝑑𝑑

 .
𝜕𝜕𝑑𝑑
𝜕𝜕𝑢𝑢

               ;   
𝜕𝜕𝑧𝑧
𝜕𝜕𝑃𝑃

=
𝜕𝜕𝑧𝑧
𝜕𝜕𝑑𝑑

.
𝜕𝜕𝑑𝑑
𝜕𝜕𝑃𝑃

+ 
𝜕𝜕𝑧𝑧
𝜕𝜕𝑑𝑑

 .
𝜕𝜕𝑑𝑑
𝜕𝜕𝑃𝑃

    

 Cor. 3. If u=f(x,y)  where y= ∅(𝑑𝑑) then since x = 𝜑𝜑(𝑑𝑑) , u is a composite 
function of x  

  
𝑑𝑑𝑢𝑢
𝑑𝑑𝑑𝑑

=  
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

 .
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

 .
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

          =>
𝑑𝑑𝑢𝑢
𝑑𝑑𝑑𝑑

=  
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

 +  
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

 .
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

   


Cor. 1. If u=f(x,y,z) and x,y,z are function of t, then y is a composite function of t and 



Cor. 2. If z = f(x,y) and x and y are the functions of u and v, then



 Cor. 3. If u=f(x,y)  where y= then since x =  , u is a composite function of x 





Cor. 4. If we are given a implicit function f(x,y) = c , then u=f(x,y) where u=c 
using cor. 3 , we have  

𝑑𝑑𝑢𝑢
𝑑𝑑𝑑𝑑

=  
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

 +  
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

 .
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

But du/dx=0 
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

 +  
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

 .
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0           𝑃𝑃𝑃𝑃           
𝜕𝜕𝑖𝑖
𝜕𝜕𝑑𝑑

 +  
𝜕𝜕𝑖𝑖
𝜕𝜕𝑑𝑑

 .
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −  
𝜕𝜕𝑖𝑖
𝜕𝜕𝑑𝑑
𝜕𝜕𝑖𝑖
𝜕𝜕𝑑𝑑

=  −  
𝑖𝑖𝑑𝑑
𝑖𝑖𝑑𝑑

 

Hence the differential coefficient of f(x,y) w.r.t x is 𝜕𝜕𝑖𝑖
𝜕𝜕𝑑𝑑

 +  𝜕𝜕𝑖𝑖
𝜕𝜕𝑑𝑑

 . 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 


Cor. 4. If we are given a implicit function f(x,y) = c , then u=f(x,y) where u=c using cor. 3 , we have 



But du/dx=0





Hence the differential coefficient of f(x,y) w.r.t x is 



Cor 5. If f(x,y) = c, then by cor 4, we have  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=   −  
𝑖𝑖𝑑𝑑
𝑖𝑖𝑑𝑑

 

𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑃𝑃𝑒𝑒𝑛𝑛𝑡𝑡𝑖𝑖𝑎𝑎𝑡𝑡𝑖𝑖𝑛𝑛𝑜𝑜 𝑎𝑎𝑜𝑜𝑎𝑎𝑖𝑖𝑛𝑛 𝑤𝑤. 𝑃𝑃. 𝑡𝑡. 𝑑𝑑,𝑤𝑤𝑒𝑒 𝑜𝑜𝑒𝑒𝑡𝑡 

𝑑𝑑2𝑢𝑢
𝑑𝑑2𝑑𝑑

= −  
𝑖𝑖𝑑𝑑  𝑑𝑑𝑑𝑑𝑑𝑑  (𝑖𝑖𝑑𝑑) − 𝑖𝑖𝑑𝑑

𝑑𝑑
𝑑𝑑𝑑𝑑  � 𝑖𝑖𝑑𝑑�

𝑖𝑖𝑑𝑑2
=  −  

𝑖𝑖𝑑𝑑 �
𝜕𝜕𝑖𝑖𝑑𝑑
𝜕𝜕𝑑𝑑 + 𝜕𝜕𝑖𝑖𝑑𝑑

𝜕𝜕𝑑𝑑 .𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� − 𝑖𝑖𝑑𝑑 �
𝜕𝜕𝑖𝑖𝑑𝑑
𝜕𝜕𝑑𝑑 +

𝜕𝜕𝑖𝑖𝑑𝑑
𝜕𝜕𝑑𝑑 .𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�

𝑖𝑖𝑑𝑑2
 

= −  
𝑖𝑖𝑑𝑑 �𝑖𝑖𝑑𝑑𝑑𝑑 − 𝑖𝑖𝑑𝑑𝑑𝑑 . 𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑

� − 𝑖𝑖𝑑𝑑 �𝑖𝑖𝑑𝑑𝑑𝑑 − 𝑖𝑖𝑑𝑑𝑑𝑑 . 𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑
�

𝑖𝑖𝑑𝑑2

=  −
𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑2 − 𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 − 𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 − 𝑖𝑖𝑑𝑑𝑑𝑑 𝑖𝑖𝑑𝑑2

𝑖𝑖𝑑𝑑3
 

𝐻𝐻𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒 
𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2 =  −  

𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑2 − 2𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 − 𝑖𝑖𝑑𝑑𝑑𝑑 𝑖𝑖𝑑𝑑2

𝑖𝑖𝑑𝑑3
 


Cor 5. If f(x,y) = c, then by cor 4, we have 











𝐸𝐸𝑑𝑑𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑒𝑒 1. 𝐼𝐼𝑖𝑖 𝑧𝑧 = 2𝑑𝑑𝑑𝑑2 − 3𝑑𝑑2𝑑𝑑 𝑎𝑎𝑛𝑛𝑑𝑑 𝑖𝑖 𝑖𝑖𝑛𝑛𝑐𝑐𝑃𝑃𝑒𝑒𝑎𝑎𝑠𝑠𝑒𝑒𝑠𝑠 𝑎𝑎𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑃𝑃𝑎𝑎𝑡𝑡𝑒𝑒 𝑃𝑃𝑖𝑖 2 𝑐𝑐𝑚𝑚 𝑝𝑝𝑒𝑒𝑃𝑃 𝑠𝑠𝑒𝑒𝑐𝑐𝑃𝑃𝑛𝑛𝑑𝑑 𝑤𝑤ℎ𝑒𝑒𝑛𝑛 𝑖𝑖𝑡𝑡  

𝑝𝑝𝑎𝑎𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 𝑡𝑡ℎ𝑃𝑃𝑃𝑃𝑢𝑢𝑜𝑜ℎ 𝑡𝑡ℎ𝑒𝑒 𝑃𝑃𝑎𝑎𝑜𝑜𝑢𝑢𝑒𝑒 𝑑𝑑 = 3𝑐𝑐𝑚𝑚, 𝑠𝑠ℎ𝑃𝑃𝑤𝑤 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑖𝑖𝑖𝑖 𝑑𝑑 𝑖𝑖𝑠𝑠 𝑝𝑝𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑜𝑜 𝑡𝑡ℎ𝑃𝑃𝑃𝑃𝑢𝑢𝑜𝑜ℎ 𝑡𝑡ℎ𝑒𝑒 𝑃𝑃𝑎𝑎𝑜𝑜𝑢𝑢𝑒𝑒 𝑑𝑑 = 1 𝑐𝑐𝑚𝑚, 

𝑑𝑑 𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑏𝑏𝑒𝑒 𝑑𝑑𝑒𝑒𝑐𝑐𝑃𝑃𝑒𝑒𝑎𝑎𝑠𝑠𝑖𝑖𝑛𝑛𝑜𝑜 𝑎𝑎𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑃𝑃𝑎𝑎𝑡𝑡𝑒𝑒 𝑃𝑃𝑖𝑖 2
2

15
 𝑐𝑐𝑚𝑚 𝑝𝑝𝑒𝑒𝑃𝑃 𝑠𝑠𝑒𝑒𝑐𝑐𝑃𝑃𝑛𝑛𝑑𝑑, 𝑖𝑖𝑛𝑛 𝑃𝑃𝑃𝑃𝑑𝑑𝑒𝑒𝑃𝑃 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑧𝑧 𝑠𝑠ℎ𝑎𝑎𝑜𝑜𝑜𝑜 𝑃𝑃𝑒𝑒𝑚𝑚𝑎𝑎𝑖𝑖𝑛𝑛 𝑐𝑐𝑃𝑃𝑛𝑛𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡. 

𝐸𝐸𝑑𝑑𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑒𝑒 2. 𝑖𝑖𝑖𝑖 𝑢𝑢 𝑖𝑖𝑠𝑠 𝑎𝑎 ℎ𝑃𝑃𝑚𝑚𝑃𝑃𝑜𝑜𝑒𝑒𝑛𝑛𝑒𝑒𝑃𝑃𝑢𝑢𝑠𝑠 𝑖𝑖𝑢𝑢𝑛𝑛𝑐𝑐𝑡𝑡𝑖𝑖𝑃𝑃𝑛𝑛 𝑃𝑃𝑖𝑖 𝑛𝑛𝑡𝑡ℎ 𝑑𝑑𝑒𝑒𝑜𝑜𝑃𝑃𝑒𝑒𝑒𝑒 𝑖𝑖𝑛𝑛 𝑑𝑑, 𝑑𝑑, 𝑧𝑧, 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 

𝑑𝑑
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

+ 𝑑𝑑
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

+ 𝑧𝑧
𝜕𝜕𝑢𝑢
𝜕𝜕𝑧𝑧

= 𝑛𝑛𝑢𝑢  

𝐸𝐸𝑑𝑑𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑒𝑒 3.𝐹𝐹𝑖𝑖𝑛𝑛𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 ,𝑤𝑤ℎ𝑒𝑒𝑛𝑛 

(𝑖𝑖)  𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑 = 𝑐𝑐                                (𝑖𝑖𝑖𝑖)        (cos 𝑑𝑑)𝑑𝑑 = (sin𝑑𝑑)𝑑𝑑  

 




















Partial derivatives http://nptel.ac.in/courses/122101003/
31

Partial derivatves
and euler th.

www.nptel.ac.in/courses/12210100
3/downloads/Lecture-31.pdf.

NPTEL LINKS FOR REFERENCE

http://nptel.ac.in/courses/122101003/31
http://www.nptel.ac.in/courses/122101003/downloads/Lecture-31.pdf


If u and v are functions of two independent variables x and y, then the 

determinant �

𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

          𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

𝜕𝜕𝑃𝑃
𝜕𝜕𝑑𝑑

           𝜕𝜕𝑃𝑃
𝜕𝜕𝑑𝑑

� is called Jacobian of u,v with respect to x,y and is 

denoted by symbol J�𝑢𝑢 ,𝑃𝑃
𝑑𝑑 ,𝑑𝑑
�  𝑃𝑃𝑃𝑃 𝜕𝜕(𝑢𝑢 ,𝑃𝑃)

𝜕𝜕(𝑑𝑑 ,𝑑𝑑)
 

Simolarly, if u,v,w be the function of x,y,z, then the Jacobian of u,v,w with 
respect to x,y,z is  

𝐽𝐽 �
𝑢𝑢, 𝑃𝑃,𝑤𝑤
𝑑𝑑,𝑑𝑑, 𝑧𝑧

�    𝑃𝑃𝑃𝑃  
𝜕𝜕(𝑢𝑢, 𝑃𝑃,𝑤𝑤)
𝜕𝜕(𝑑𝑑,𝑑𝑑, 𝑧𝑧)

   =
�

�

𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

           
 𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

              
𝜕𝜕𝑢𝑢
𝜕𝜕𝑧𝑧

 

𝜕𝜕𝑃𝑃
𝜕𝜕𝑑𝑑

           
𝜕𝜕𝑃𝑃
𝜕𝜕𝑑𝑑

              
𝜕𝜕𝑃𝑃
𝜕𝜕𝑧𝑧

𝜕𝜕𝑤𝑤
𝜕𝜕𝑑𝑑

           
𝜕𝜕𝑤𝑤
𝜕𝜕𝑑𝑑

              
𝜕𝜕𝑤𝑤
𝜕𝜕𝑧𝑧

 
�

�
 

 


If u and v are functions of two independent variables x and y, then the determinant  is called Jacobian of u,v with respect to x,y and is denoted by symbol J

Simolarly, if u,v,w be the function of x,y,z, then the Jacobian of u,v,w with respect to x,y,z is 





Properties of JACOBIANS 

1. If u,v are functions of r,s where r, s are functions of 
x,y, then  
𝜕𝜕(𝑢𝑢, 𝑃𝑃)
𝜕𝜕(𝑑𝑑,𝑑𝑑)

=  
𝜕𝜕(𝑢𝑢, 𝑃𝑃)
𝜕𝜕(𝑃𝑃, 𝑠𝑠)

 .
𝜕𝜕(𝑃𝑃, 𝑠𝑠)
𝜕𝜕(𝑑𝑑,𝑑𝑑)

                                            [ 𝑐𝑐ℎ𝑎𝑎𝑖𝑖𝑛𝑛 𝑅𝑅𝑢𝑢𝑜𝑜𝑒𝑒 𝑖𝑖𝑃𝑃𝑃𝑃 𝐽𝐽𝑎𝑎𝑐𝑐𝑃𝑃𝑏𝑏𝑖𝑖𝑎𝑎𝑛𝑛𝑠𝑠] 

2.  If J1 is the Jacobian of u,v, with respect to x,y and 
J2 is the Jacobian of x,y with respect to u,v, then J1J2 
=1  i.e., 𝜕𝜕(𝑢𝑢 ,𝑃𝑃)

𝜕𝜕(𝑑𝑑 ,𝑑𝑑)
=  𝜕𝜕(𝑑𝑑 ,𝑑𝑑)

𝜕𝜕(𝑢𝑢 ,𝑃𝑃)
= 1 

 
𝐸𝐸𝑑𝑑𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑒𝑒 1.  𝐼𝐼𝑖𝑖 𝑑𝑑 = 𝑃𝑃 𝑠𝑠𝑖𝑖𝑛𝑛𝜃𝜃 𝑐𝑐𝑃𝑃𝑠𝑠∅ , 𝑧𝑧

= 𝑃𝑃 cos𝜃𝜃 , 𝑠𝑠ℎ𝑃𝑃𝑤𝑤 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 
𝜕𝜕(𝑑𝑑,𝑑𝑑, 𝑧𝑧)
𝜕𝜕(𝑃𝑃,𝜃𝜃,𝜑𝜑)

=  𝑃𝑃2 sin𝜃𝜃 


Properties of JACOBIANS

1. If u,v are functions of r,s where r, s are functions of x,y, then 



2.  If J1 is the Jacobian of u,v, with respect to x,y and J2 is the Jacobian of x,y with respect to u,v, then J1J2 =1  i.e., 







MAXIMA AND MINIMA OF FUNCTIONS OF TWO 
VARIABLES

 A function f(x,y) is said to have a maximum 
value at x = a, y = b if f(a,b)  f(a+h,b+k), for 
small and independent values of h and k, 
positive or negative.

 A function f(x,y) is said to have a minimum 
value at x = a, y = b if f(a,b)  f(a+h,b+k), for 
small and independent values of h and k, 
positive or negative.



RULE TO FIND THE EXTREME VALUES OF A 
FUNCTION  

Let z = f(x,y) be  a function of two variables
(i) Find     and
(ii) Solve    =0 and    =0 simultaneously.
Let (a,b); (c,d)….. Be the solutions of these
equations.
(iii) For each solution in step (ii), find r =
s =        ,  t =



(iv) (a) If rt - 0 and r   0 for a particular 
solution (a,b) of step (ii),then z has a maximum 
value at (a,b).

(b) ) If rt - 0 and r   0 for a particular 
solution (a,b) of step (ii),then z has a minimum 
value at (a,b).

(c) If rt - 0 for a particular solution (a,b) 
of step (ii),then z has no extreme value at (a,b) 

(d) If rt - =0, the case is doubtful and 
requires  further investigation.



ASSIGNMENT

1.Examine the extreme values of     +   + 6 x  + 12 
2. Find the points on the surface     = xy + 1 nearest to the 

origin.
3. A rectangular box open at the top, is to have a volume of 

32 c.c. Find the dimensions of the box requiring least 
material for its construction.

4. Divide 24 into three parts such that the continued product 
of the first, square of the second and the cube of the third 
may be maximum.

x2 y2

z2 


z2



Differentiation Under Integral SIGN

If a function f(x,α) of the two variables x and α, α being called  
parameter, be integrated w.r.t. x between limits a and 
b,∫ 𝑖𝑖(𝑑𝑑,α)𝑑𝑑𝑑𝑑 𝑖𝑖𝑠𝑠 𝑎𝑎 𝑖𝑖𝑢𝑢𝑛𝑛𝑐𝑐𝑡𝑡𝑖𝑖𝑃𝑃𝑛𝑛 𝑃𝑃𝑖𝑖 α. for example,𝑏𝑏

𝑎𝑎  

� sinα dx =  −�
cosα
α

�
0

𝜋𝜋
2�

=  −
1
α
�cos

𝜋𝜋
2

 α − 1�
𝜋𝜋
2

0

=  
1
α

 �1 − 𝑐𝑐𝑃𝑃𝑠𝑠
𝜋𝜋
2

 α� 

𝑡𝑡ℎ𝑢𝑢𝑠𝑠 𝑖𝑖𝑛𝑛 𝑜𝑜𝑒𝑒𝑛𝑛𝑒𝑒𝑃𝑃𝑎𝑎𝑜𝑜 � 𝑖𝑖(𝑑𝑑,α)𝑑𝑑𝑑𝑑 = 𝐹𝐹(α)
𝑏𝑏

𝑎𝑎
 


If a function f(x,α) of the two variables x and α, α being called  parameter, be integrated w.r.t. x between limits a and b,







𝑳𝑳𝑳𝑳𝑳𝑳𝒃𝒃𝑳𝑳𝑳𝑳𝑳𝑳𝒛𝒛′𝒔𝒔 𝑹𝑹𝑹𝑹𝑹𝑹𝑳𝑳

𝐼𝐼𝑖𝑖 𝑖𝑖(𝑑𝑑,α)𝑎𝑎𝑛𝑛𝑑𝑑 
𝜕𝜕
𝜕𝜕𝑑𝑑

 [𝑖𝑖(𝑑𝑑,α)]𝑏𝑏𝑒𝑒 𝑐𝑐𝑃𝑃𝑛𝑛𝑡𝑡𝑖𝑖𝑛𝑛𝑃𝑃𝑢𝑢𝑠𝑠 𝑖𝑖𝑢𝑢𝑛𝑛𝑐𝑐𝑡𝑡𝑖𝑖𝑃𝑃𝑛𝑛𝑠𝑠 𝑃𝑃𝑖𝑖 𝑑𝑑 𝑎𝑎𝑛𝑛𝑑𝑑 α, then 
𝑑𝑑
𝑑𝑑α

�� 𝑖𝑖(𝑑𝑑,α)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
� 

= �
𝜕𝜕
𝜕𝜕𝑑𝑑

 [𝑖𝑖(𝑑𝑑,α)] 𝑑𝑑𝑑𝑑 𝑤𝑤ℎ𝑒𝑒𝑃𝑃𝑒𝑒 𝑎𝑎 𝑎𝑎𝑛𝑛𝑑𝑑 𝑏𝑏 𝑎𝑎𝑃𝑃𝑒𝑒 𝑐𝑐𝑃𝑃𝑛𝑛𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡𝑠𝑠 𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑𝑒𝑒𝑛𝑛𝑡𝑡 𝑃𝑃𝑖𝑖 α.
𝑏𝑏

𝑎𝑎
 

𝐸𝐸𝑑𝑑𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑒𝑒 1.𝐸𝐸𝑃𝑃𝑎𝑎𝑜𝑜𝑢𝑢𝑎𝑎𝑡𝑡𝑒𝑒 �
tan−1 𝑎𝑎𝑑𝑑
𝑑𝑑(1 + 𝑑𝑑2)  𝑑𝑑𝑑𝑑 (𝑎𝑎 ≥ 0)𝑏𝑏𝑑𝑑 𝑎𝑎𝑝𝑝𝑝𝑝𝑜𝑜𝑑𝑑𝑖𝑖𝑛𝑛𝑜𝑜 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑃𝑃𝑒𝑒𝑛𝑛𝑡𝑡𝑖𝑖𝑎𝑎𝑡𝑡𝑖𝑖𝑃𝑃𝑛𝑛 𝑢𝑢𝑛𝑛𝑑𝑑𝑒𝑒𝑃𝑃 𝑡𝑡ℎ𝑒𝑒 𝐼𝐼𝑛𝑛𝑡𝑡𝑒𝑒𝑜𝑜𝑃𝑃𝑎𝑎𝑜𝑜 𝑠𝑠𝑖𝑖𝑜𝑜𝑛𝑛.∞

0
 

𝐸𝐸𝑑𝑑𝑎𝑎𝑚𝑚𝑝𝑝𝑜𝑜𝑒𝑒 2. 𝑒𝑒𝑃𝑃𝑎𝑎𝑜𝑜𝑢𝑢𝑎𝑎𝑡𝑡𝑒𝑒 �
log(1 + 𝑎𝑎𝑑𝑑)

1 + 𝑑𝑑2  𝑑𝑑𝑑𝑑 𝑎𝑎𝑛𝑛𝑑𝑑 ℎ𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒 𝑠𝑠ℎ𝑃𝑃𝑤𝑤 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 �
log(1 + 𝑑𝑑)

1 + 𝑑𝑑2  𝑑𝑑𝑑𝑑
1

0

𝑎𝑎

0

=  
𝜋𝜋
8

log 2 
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