MATRICES AND ITS APPLICATIONS

- Elementary transformations and elementary matrices
- Inverse using elementary transformations
- Rank of a matrix
- Normal form of a matrix
- Linear dependence and independence of vectors

- Consistency of linear system of equations
- Linear and orthogonal transformations
- Eigen values and eigen vectors
- Properties of eigen values
- Cayley-Hamilton theorem and its applications
- Diagonalization of Matrices, similar Matrices, Quadratic form.

Definition -A system of mn numbers arranged in a rectangular formation along m rows and n columns and bounded by the brackets[] is called an m by n matrix ; which is written as m*n matrix. A matrix is also denoted by a single capital letter.

Thus

$$\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

is a matrix of order m * n. It has m rows and n columns. Each of the m * n numbers is called an element of the matrix.

[_]

The matrix A is denoted by

for eg.
$$\mathbf{A} = \begin{bmatrix} 9 & 13 & 5 \\ 1 & 11 & 7 \\ 3 & 9 & 2 \\ 6 & 0 & 7 \end{bmatrix}$$

SPECIAL MATRICES

1. Row and column matrices- A matrix having a single row is called a row matrix e.g.,

A matrix having a single column is called a column matrix e.g.,

$$\begin{bmatrix} 2 & 5 & 9 \end{bmatrix} \quad , \begin{bmatrix} 1 \\ 4 \\ 6 \end{bmatrix}$$

are raw matrix & column matrix.

2. Square Matrix - A matrix having n rows and n columns is called a square matrix of order n.

For e.g.,
$$\begin{bmatrix} 2 & 4 & 5^{-1} \\ 3 & 1 & 7 \\ 4 & 5 & 6 \end{bmatrix}$$

The diagonal of this matrix containing the elements 2,1,6 is called the leading or principal diagonal.

A square matrix is said to be **singular** if its determinant is zero otherwise **non-singular**.,

- 3. Diagonal Matrix A square matrix all of whose elements except those in the leading diagonal, are zero is called a diagonal matrix.
- A diagonal matrix whose all the leading diagonal elements are equal is called a scalar matrix . For e.g.,

г2	0	01		[4	0	0]
2 0 0	0 -5 0	o	and	0	4	$\begin{pmatrix} 0\\0\\4 \end{bmatrix}$
Lo	0	6		Lo	0	4

are the diagonal and scalar matrices respectively.

4. Unit Matrix – A diagonal matrix of order n which has unity for all its diagonal elements, is called a unit matrix or an identity matrix of order n and is denoted by I_n . For e.g., unit matrix of order 3 is

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

5. Null matrix – If all the elements of a matrix are zeros, it is called a null matrix or zero matrix and is denoted by $\mathbf{\hat{0}}$ e.g.,

 $\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$

- 6. Symmetric and skew symmetric matrices A square matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ is said to be symmetric when for all I and j. $a_{ij} = a_{ji}$
 - If $a_{ij=-}a_{ji}$ for all I and j so that all the leading diagonal

elements are zero, then the matrix is called a skewsymmetric matrix. Examples of symmetric and skewsymmetric matrices are respectively.

$$\begin{bmatrix} a & h & g \\ h & b & f \\ a & f & c \end{bmatrix} \begin{bmatrix} 0 & h & g \\ -h & 0 & f \\ -g & -f & 0 \end{bmatrix}$$

7. Triangular Matrix – A square matrix all of whose elements below the leading diagonal are zero, is called upper triangular matrix. A square matrix all of whose elements above the leading diagonal are zero, is called a lower triangular matrix. Thus

 $\begin{bmatrix} a & h & g \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \end{bmatrix}$

MINOR & COFACTORS

- If A is a square matrix, then the minor of the entry in the *i*-th row and *j*-th column (also called the (*i*,*j*) minor, or a first minor) is the deteminant of the subm,atrix formed by deleting the i-th row and jth column. This number is often denoted M_{*i*,*j*}.
- The (I,j) cofactor is obtained by multiplying the minor by denoted by C_{i,j}.
- For ex. consider the 3*3 matrix
- $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 1 & 1 \end{bmatrix}$

•
$$M_{2,3} = \det \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 1 & 1 \end{bmatrix} = \det \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} 1 - 6 = -5$$

So cofactor of (2,3) entries is: $C_{2,3} = (-)^{2+3} M_{2,3}$

LINK FOR REFERENCE

• Matrix **Algebra**:

https://www.youtube.com

ELEMENTARY TRANSFORMATIONS(OPERATIONS)

 R_{ij}

C_{ii}

 kR_i

(i) Interchange of two rows & two columns

The interchange of ith & jth rows is denoted by

The interchange of ith & jth column is denoted by

(ii) Multiplication of (each element of) a row or column by a non zero number k.

The multiplication of ith row by k is denoted by

The multiplication of jth column by k is denoted by (iii) Addition of k times the elements of a row(or column) to the kc_i corresponding elements of another row (or column), k $0 \neq$ The addition of k times the jth row to the ith row is denoted by $R_i + kR_j$

The addition of k times the jth row to the ith row is denoted by $C_i + kC_j$ If a matrix B is obtained from a matrix A by one or more E-operation then B is said to equivalent to A. Denoted by A ~ B

ELEMENTARY MATRICES, INVERSE OF A MATRIX BY GAUSS JORDAN METHOD

- The matrix obtained from a unit matrix I by applying it to any one of the E-operations(elementary operations) is called an elementary matrix. A^{-1}
- Gauss Jordan method:
- The elementary row(not column) operations which reduce a square matrix A to the unit matrix , give the inverse matrix
- Working rule: To find the inverse of A by E-row operations, we write A and I side by side and the same operations are performed on both. As soon as A is reduced to I, I will reduce to A^{-1}

ASSIGNMENT II(A)

Use Gauss-Jordan method, find the inverse of the matrix

$$\begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

NPTEL LINK FOR REFERENCE

Inverse of
matrixhttp://nptel.ac.in/course
s/11105035/3

RANK OF A MATRIX

• A matrix is said to be of rank r when

(i) it has atleast one non-zero minor of order r,(ii) every minor of order higher than r vanishes.

Briefly, the rank of a matrix is the largest order of any non-vanishing minor of the matrix.

(i) If a matrix has a non-zero minor of order r,its rank is ≥ r.
(ii) If all minors of a matrix of order r + 1 are zero,its rank is ≤ r.

The rank of a marix A is denoted by $\rho(A)$.

- If A is a null matrix then $\rho(A) = 0$
- If A is a not a null matrix then $\rho(A) \ge 1$
- If a is a non singular $n \ge n$ matrix then $\rho(A) = n$
- if I_n is the n x n unit matrix then hence $\rho() = n$
- if A is the m x n matrix then $\rho(A) = \min(m, n)^{\prime}$
- If all minors of order r are equal to zero then $\rho(A) < r$

DIFFERENT METHODS TO FIND RANK OF A

(a) Start with the highest order minor of A. let its order be r. If any one of them is non zero then $\rho(A) = r$.

if all of them zero then taking its next lower order (r-1) and so on till we get a non zero minor then the order of that minor is the rank of A.

- * Lots of computational work required * so we adopt second method.
- (b) If A is an m x n matrix and by a series of elementary(row or column or both) operations, it can be put into one of the following forms : called Normal forms

NORMAL FORM OF A MATRIX Normal forms $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I_r \\ 0 \end{bmatrix} \begin{bmatrix} I_r & 0 \end{bmatrix} \begin{bmatrix} I_r \\ 0 \end{bmatrix} \begin{bmatrix} I_r \end{bmatrix}$

Where I_r is the unit matrix of order r. hence $\rho(A) =$

• * elementary operations does not effect the rank of a matrix*

r

Assignment II (b)

• Determine the rank of the matrix by reducing it to the normal form

$$\begin{bmatrix} 6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15 \end{bmatrix}$$

FOR AN MATRIX A M X N OF RANK R, TO FIND SQUARE MATRICES P & Q OF ORDERS M & N RESPECTIVELY, SUCH THAT PAQ IS IN THE NORMAL FORM $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$

• Working rule: write A = I A I

• Reduce the matrix on L.H.S.to normal form by applying elementary row or column operation.

Remember

* if row operation is applied on L.H.S. then this operation is applied on pre-factor of A on R.H.S

* if column operation is applied on L.H.S. then this operation is applied on post-factor of A on R.H.S
**** The matrices P & Q are not unique. ****

ASSIGNMENT II(C)

Find non-singular matrices P and Q such that PAQ is in the normal form for the matrix

$$\begin{bmatrix} 1 & 2 & 3 & -2 \\ 2 & -2 & 1 & 3 \\ 3 & 0 & 4 & 1 \end{bmatrix}$$

LINKS FOR REFERENCE

o Rank of matrix

0

- o http://nptel.ac.in/courses/111105035/3
- o https://www.youtube.com/watch?v=GU-pJMxABQ0

SOLUTION OF A SYSTEM OF LINEAR EQUATIONS Let the system of equations

(3 equations in 3 unknowns)

$$a_1 x + b_1 y + c_1 z = d_1$$

$$a_2 x + b_2 y + c_2 z = d_2$$

$$a_3 x + b_3 y + c_3 z = d_3$$

In matrix notation these equations can be written as

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$
or
$$A \qquad X = B$$

where A : co- efficient matrix X : column matrix of unknown B: column matrix of constant

Types of Equations: Homogeneous & Non Homogeneous

- case I : If $d_1 = d_2 = d_3 = 0$ then B = 0 and AX = B reduce to AX = 0 then a system of equations is called a system of Homogeneous linear equations.
- Case 2: if at least one of d_1 , d_2 , d_3 is non zero means B \neq 0 then a system of equations is called a system of Non Homogeneous linear equations
 - There are three possibilities :
 - (i) The equations have no solution , called inconsistent system of equations
- (ii) The equations have one solution(unique solution) ,called consistent system of equations
- (iii) The equations have more solutions(infinite solution), called consistent system of equations

(A) FOR A SYSTEM OF <u>NON – HOMOGENEOUS LINEAR EQUATION</u> AX = B

- (i) If $\rho[A:B] \neq \rho(A)$, the system is inconsistent
- (ii) If $[A:B] = \rho(A) =$

number of unknowns, the system has a unique solution

(iii) If $[A:B] = \rho(A)$

< number of unknowns, the system has un infinite number of solution

(b) For a system of <u>Homogeneous linear equation</u> Ax = 0

- (i) X = 0 is always a solution, called null solution or the trivial solution.
 (ii) If = number of unknowns, the system has only the trivial solution.
- (ii) If $\rho(A) <$ number of unknowns, the system has an infinite no of non trivial solutions.

WORKING RULE:

- (i) The given equation AX = B , find A & B
- (ii) Write the augmented matrix [A: B]
- (iii) By E-row operation on A and B , reduce A to a diagonal matrix , thus getting

$$\begin{bmatrix} A:B \end{bmatrix} = \begin{bmatrix} p_1 & 0 & 0 & : & q_1 \\ 0 & p_2 & 0 & : & q_2 \\ 0 & 0 & p_3 & : & q_3 \end{bmatrix}$$

Then $p_1 x = q_1$ $p_2 y = q_2$ $p_3 z = q_3$

ASSIGNMENT II(D)

Test for consistency and solve the equations

$$x + 2y + z = 3$$

 $2x + 3y + 2z = 5$
 $3x - 5y + 5z = 2$
 $3x + 9y - z = 4$

ASSIGNMENT II(E)

For what values of a and b do the equations

x + 2y + 3z = 6, x + 3y + 5z = 9, 2x + 5y + az = b have

(i) unique solution

(ii) no solution

(iii) more than one solution

LINKS FOR REFERENCE

• System of simultaneous Linear equation.

o http://nptel.ac.in/courses/111105035/5

0

VECTOR

- Any quantity having n-components is called a vector of order n. Therefore the coefficients in a linear equation or the elements in a row or column will form a vector. Thus any n numbers x₁,x₂,x₃,....x_n written in a particular order, constitute a vector x.
- Any ordered n-tuple of numbers is called an n-vector.
- Let $X = (x_1, x_2, \dots, x_n), Y = (y_1, y_2, \dots, y_n)$
- Two operations for vectors:
- Addition : $X+Y=(x_1+y_1,x_2+y_2,...,x_n+y_n)$
- Scalar multiplication KX==(kx₁,kx₂,.....kx_n)

Types of Vectors

Any quantity having n-components is called a vector of order n.Therefore the coefficients in a linear equation or the elements in a row or column will form a vector.Thus any n numbers x_1,x_2,x_3,\ldots,x_n written in a particular order, constitute a vector x.

Linear dependence. The vectors $x_1, x_2, x_3, \dots, x_n$ are said to be linearly dependent, if there exists r numbers

 $\lambda_1, \lambda_2, \ldots, \lambda_r$ not all zero, such that

 $\lambda_1 x_1 + \lambda_2 x_2 + \dots \dots \lambda_r x_r = 0$

If no such numbers other than zero, exist, th

vectors are said to be linearly independent.

CHECKING FOR THE LINEAR DEPENDENCY & LINEAR INDEPENDENCY OF VECTORS

- Working rule: suppose there are any n vectors
 - $x_1, x_2, x_3, \dots, x_n$
- (i) Consider the relation

 $k_1 x_1 + k_2 x_2 + k_3 x_3 + \dots \dots + k_n x_n = 0$

- (ii) substituting the values of $x_1, x_2, x_3, \dots, x_n$ and form the equations.
- (iii) Now equating corresponding components on both side & we get a homogeneous system of n linear equations in m unknowns.
- (iv) Form the coefficient matrix
- (v) Find the rank of above matrix

THERE ARE TWO POSSIBLE CASES

(i) If rank of matrix is less than the number of unknown, the homogeneous system has infinitely many non – zero solution. Thus there exist scalars $k_1, k_2, k_3, \dots, k_n$, nor all zero, such that

$$k_1 x_1 + k_2 x_2 + k_3 x_3 + \dots \dots + k_n x_n = 0$$

The vectors $x_1, x_2, x_3, \dots, x_n$ are linearly dependent

(ii) If rank of matrix is equal than the number of unknown, the homogeneous system has trivial solution or zero solution. Thus there exist scalars k₁, k₂, k₃.....k_n
all are zero, such that k₁ x₁ + k₂ x₂ + k₃ x₃ +k_n x_n = 0 The vectors x₁, x₂, x₃.....x_n are linearly independent

ASSIGNMENT II(F)

Are the vectors linearly dependent? If so, find a relation between them.

Given the vectors

$$x_1 = (2,3,1,-1), \quad x_2 = (2,3,1,-2), \quad x_3 = (4,6,2,1)$$

NPTEL LINKS FOR REFERENCE

• Linear dependent & Independent vectors

o http://nptel.ac.in/courses/111105035/2

LINEAR TRANSFORMATIONS

Let (x,y) be the co-ordinates of a point P. In general, the relation Y = AX where

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ y_n \end{bmatrix}, \mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ x_n \end{bmatrix}$$

give linear transformation from n variables

 $x_1, x_2, x_3, \dots, x_n$ to the variables $y_1, y_2, y_3, \dots, Y_n$ i.e. the transformation of the vector X to the vector Y.

If the transformation matrix A is singular, the transformation also is said to be singular otherwise non-singular. For a nonsingular transformation Y = AX we can also write the inverse transformation $X = \begin{bmatrix} A \\ Y \end{bmatrix}$. A non-singular transformation is also called a regular transformation.

ASSIGNMENT II(G)

• Represent each of the transformations

 $x_1 = 3y_1 + 2y_2$, $x_2 = -y_1 + 4y_2$, $y_1 = z_1 + 2z_2$, $y_2 = 3z_1$ by the use of matrices and find the composite transformation which expresses x_1 , x_2 in terms of z_1 , z_2

ORTHOGONAL TRANSFORMATION

The linear transformation Y = AX is said to be **orthogonal** if it transforms $y_1^2 + y_2^2 + \dots + y_n^2$ into $x_1^2 + x_2^2 + \dots + x_n^2$

The matrix A of this transformation is called an **orthogonal** matrix. $\begin{bmatrix} x_1 \end{bmatrix}$

Now X'X =
$$\begin{bmatrix} x_1 & x_2 & x_n \end{bmatrix} \begin{bmatrix} x_2 \\ x_1^2 & x_2^2 + x_2^2 + x_n^2 & \dots + \end{bmatrix}$$

and similarly Y'Y = $y_1^2 + y_{2+}^2 + \dots + y_n^2$ If Y = AX is an **orthogonal transformation** then X'X = $x_1^2 + x_{2+}^2 + \dots + x_{n=}^2 y_{1+}^2 y_{2+}^2 + \dots + y_n^2$ = Y'Y = (AX)'(AX) = (X'A')(AX) = X'(A'A)X

ORTHOGONAL MATRIX

- which holds only when A'A = I or when $A'A = A^{-1}A$ or when $A' = A^{-1}$
- Hence a square matrix A is said to be orthogonal if A'A = AA' = I
- Also, for an **orthogonal matrix** A, $A' = A^{-1}$

Assignment II (H)

• Verify the matrix is orthogonal

$$\frac{1}{9} \begin{bmatrix} -8 & 4 & 1 \\ 1 & 4 & -8 \\ 4 & 7 & 4 \end{bmatrix}$$

NPTEL LINKS FOR REFERENCE

• Linear transformation, Matrix presentation.

0

o http://nptel.ac.in/courses/111105035/4

0

CHARACTERISTIC EQUATION

If A is a square matrix of order n, we can form the matrix $A - \lambda I$, where λ is a scalar and I is the unit matrix of order n.

The determent of this matrix equated to zero, i.e.,

$$\begin{vmatrix} A - \lambda I \end{vmatrix} = \begin{vmatrix} a_{11} - \lambda & a_{12} & a_{1n} \\ a_{21} & a_{22} - \lambda & a_{2n} \\ a_{n1} & a_{n2} & a_{nn} \end{vmatrix} = 0 \text{ is}$$
called the

characteristic equation of A.

The roots of this equation are called the **characteristic roots** or **latent roots** or **Eigen values** of A

EIGEN VECTORS

Consider the linear transformation Y = AX (1) which transforms the column vector X into the column vector Y.

Let X be such a vector which transforms into λX (λ being a non-zero scalar) by the transformation (1)

Then $Y = \lambda X$ (2) From (1) and (2)

 $AX = \lambda X = 0 \text{ or } AX - \lambda IX = 0 \text{ or } (A - \lambda I)X = 0$ (3)

These equations will have a non – trivial solution only if the co-efficient matrix $A - \lambda I$ is singular i.e., if

 $|A - \lambda I| = 0 \tag{4}$

EIGEN VECTOR

This is the characteristic equation of the matrix A and has n roots which are the **Eigen values** of A. Corresponding to each root of (4), the homogeneous system (3) has a non-zero solution

X =
$$\begin{bmatrix} x_1 \\ x_2 \\ x_n \end{bmatrix}$$
 which is called an

Eigen vector

or latent vector.

PROPERTIES OF EIGEN VALUES

- (a) The eigen values of a square A and its transpose A' are the same.
- (b) The sum of the eigen values of a matrix is the sum of the elements on the principal diagonal.
- (c) The product of the eigen values of a matrix A is equal to |A|
- (d) If λ_1 is an eigen value of a non-singular matrix A, then $\overline{\lambda}$ is an eigen value of A⁻¹
 - (e) If λ is an eigen value of an orthogonal matrix A, then $\frac{1}{\lambda}$ is also its eigen value.

PROPERTIES OF EIGEN VALUES

- (f) If $\lambda_1 \ \lambda_2$, λ_n are the eigen values of a matrix A, then A^m has the eigen values $\lambda_1^m, \lambda_2^m, \dots, \lambda_n^m$ (m being a positive integer).
- (g) The eigen values of an idempotent matrix are either zero or unity.

ASSIGNMENT II(I)

• Find the Eigen values and eigen vectors of the matrix

$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

LINKS FOR REFERNCE

Eigen values	http://nptel.ac.in/course	https://www.yo
& Eigen	<u>s/111105035/6</u>	utube.com/watc
vectors		h?v=If8pYknlxn
,Diagonaliza		М
tion of		
Matrix.		

CAYLEY HAMILTON THEOREM

Statement : Every square matrix satisfies its characteristic equation.

* Possible Questions based on Cayley-Hamilton theorem

- 1. Find Characteristic Equation of a matrix.
- 2. Verify Cayley-Hamilton theorem .
- 3. Find the inverse of a matrix.

4. Find the matrix represented by polynomial of a matrix.