MATHEMATICS-1

SECTION A

 Infinite Series
INFINITE SERIES

1. Series: Convergence 8. Raabe's test,Logarithmic test
2. General Properties
3. Cauchy's root test
4. Series of positive terms
5. Alternating series; Leibnitz's rule
6. Comparison tests
7. Integral test
8. Comparison of ratio's
9. D'Alembert's ratio test

Conditionally convergence

SEQUENCES

A sequence is an ordered progression of numbers, they can be finite or infinite in numbers.
Mathematically,. A Sequence is a function whose domain is the set N of all natural numbers whereas the range may be any set S. e.g. 1, 5, 9, 13 ----------
Consider the sequence $a_{1}, a_{2}, a_{3}, \cdots--------a_{n}$. This sequence is denoted by $\left\{a_{n}\right\}$

SEQUENCES

A sequence can be defined using a formula tofind $\mathrm{a}_{a_{n}}=3 n-4$

$$
-1,2,5,8,11, \ldots
$$

$$
\text { ex. } a_{n}=a_{n-1}-6 \text { and } a_{1}=14
$$

$$
14,8,2,-4,-10, \ldots
$$

ARITHMETIC SEQUENCES

An Arithmetic sequence is a special type of sequence in which successive terms have a common difference (adding or subtracting the same number each time)
Common difference is denoted \boldsymbol{d}
Formula for arithmetic seq. is:

GEOMETRIC SEQUENCES

Geometric sequence is a special type of sequence in which successive term have a common ratio (multiplying or dividing by the same number each time),
the common ratio is denoted r,formula for geometric seq. is:

$$
a_{n}=a_{1} \cdot r^{n-1}
$$

Convergence , divergence \& oscillatory sequence
(a)If $\lim _{n \rightarrow \infty} a_{n}=a$ finite quantity, then the sequence is said to be convergent
(b) a)If $\lim _{n \rightarrow \infty} a_{n}=+\infty o r-\infty$, then the sequence is said to be divergent
(c) If $\lim _{n \rightarrow \infty} a_{n}$ is not unique, then the sequence is said to be oscillatory.
Q. Examine the convergence of the sequence

$$
u_{n}=\frac{3 n-1}{1+2 n}
$$

SERIES

Finite Series:- If u_{n} is a sequence of real numbers, then the expression $u_{1}+u_{2}+u_{3}+------u_{n}$ [i.e. the sum of all terms of the sequence, which are finite in number] is called a finite Series.

Infinite Series:- If u_{n} is a sequence of real numbers, then the expression $u_{1}+u_{2}+u_{3}+-----u_{n} \pm----\infty$ [i.e. the sum of all terms of the sequence, which are infinite in number] is called an Infinite Series.

The Infinite Series $u_{1}+u_{2}+u_{3}+------u_{n} \pm----\infty$ is denoted by $\sum_{n=1}^{\infty} u_{n}$ or simply by $\sum u_{n}$.

Series of positive terms:-

If all the terms of the infinite series $\sum u_{n}=u_{1}+u_{2}+u_{3}+----$ $--u_{n} \pm---\infty$ are positive i.e. $u_{n}>0 \forall n$, then the series $\sum u_{n}$ is called a positive term series.

Partial Sums:-

If $\sum u_{n}=u_{1}+u_{2}+u_{3}+------u_{n} \pm----\infty$ is an infinite series where the terms may be + ve or -ve , then $S_{n}=u_{1}+u_{2}+u_{3}+--$ $---u_{n}$
Is called the nth partial sum of $\sum u_{n}$. Thus the nth partial sum of an infinite series is the sum of its first n terms. $S_{1}, S_{2}, S_{3},---$ - are first, second, third ------------ partial sums of the series.
Since $n \in N,\left\{S_{n}\right\}$ is a sequence called the sequence of partial sums of an infinite series $\sum u_{n}$.

PARTIAL SUM FORMULAS

Arithmetic sequence

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)=\frac{n}{2}\left(2 a_{1}+(n-1) d\right)
$$

Geometric sequence

$$
S_{n}=a_{1} \cdot \frac{1-r^{n}}{1-r}
$$

Convergence, Divergence and Oscillation of an infinite series:-

An infinite series $\sum u_{n}$ converges, diverges and oscillates (finitely or infinitely) according as the sequence $\left\{S_{n}\right\}$ of its partial sums converges, diverges or oscillates(finitely or infinitely).
The series $\sum u_{n}$ converges if the sequence $\left\{S_{n}\right\}$ of its partial sums converges.
Or we can say $\sum u_{n}$ is convergent if
$\lim _{n \rightarrow \infty} S_{n}=a$ finite quantity

The series $\sum u_{n}$ diverges if the sequence $\left\{S_{n}\right\}$ of its partial sums diverges.
(4) Or we can say $\sum u_{n}$ is divergent if $\lim _{n \rightarrow \infty} s_{n}=+\infty$ or $-\infty$
(The series $\sum u_{n}$ oscillates finitely if the sequence $\left\{S_{n}\right\}$ of its partial sums oscillates finitely.

The series $\sum u_{n}$ oscillates infinitely if the sequence $\left\{S_{n}\right\}$ of its partial sums oscillates infinitely.

Thus, $\sum u_{n}$ is oscillates infinitely if $\left\{S_{n}\right\}$ oscillating between $+\infty$ or $-\infty$
test the nature of the series $1+3+5+7+---\infty$

$$
\text { Let } S_{n}=1+3+5+7+---\mathrm{n} \text { terms }
$$

Here $T_{n}=2 n-1$

$$
\begin{aligned}
& S_{n}= \sum T_{n} \\
&= \sum(2 n-1)=2 \sum n-\sum 1 \\
& \quad=2 \frac{n(n+1)}{2}-n \\
&=n^{2}+n-n=n^{2}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} n^{2}=\infty
$$

$\Rightarrow\left\{S_{n}\right\}$ diverges to $+\infty$
So, the given series diverges to $+\infty$

Q2 $\quad 1-\frac{1}{5}+\frac{1}{5^{2}}-\frac{1}{5^{3}}+----\infty$
The given series being a G.P. series with common ratio $-\frac{1}{5}<1$

$$
S_{n}=1-\frac{1}{5}+\frac{1}{5^{2}}-\frac{1}{5^{3}}+-----n \text { terms }
$$

$$
S_{n}=1-\frac{1-\left(-\frac{1}{5}\right)^{n}}{1-\left(-\frac{1}{5}\right)}=\frac{1-(-1)^{n} \frac{1}{5^{n}}}{1+\frac{1}{5}}
$$

$$
=\frac{5}{6}\left\{1-(-1)^{n} \frac{1}{5^{n}}\right\}
$$

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{5}{6}\left\{1-(-1)^{n} \frac{1}{5^{n}}\right\}
$$

$$
=\frac{5}{6} \quad\left[\because \text { as } n \rightarrow \infty, \frac{1}{5^{n}} \rightarrow 0\right]
$$

$\Rightarrow\left\{S_{n}\right\}$ converges to $\frac{5}{6}$
So, the given series converges to $\frac{5}{6}$

Q3 $\quad 7-4-3+7-4-3+7-4-3---\infty$
Here $S_{n=} \quad 7-4-3+7-4-3+7-4-3---$ to n terms
$=0,7,3$ according as the number of terms is $3 \mathrm{~m}, 3 \mathrm{~m}+1,3 \mathrm{~m}+2$
respectively.
$S=\left\{\begin{array}{c}0,3 m \\ 7,3 m+1 \\ 3,3 m+2\end{array}\right\}$ number of terms
Clearly S_{n} does not tend to a unique limit, $\left\{S_{n}\right\}$ oscillates finitely.
\Rightarrow The given series oscillates finitely.

Q4. $\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots \ldots \ldots \infty$

$$
\text { Let } \begin{aligned}
u_{n} & =\frac{1}{(2 n-1)(2 n+1)} \\
& =\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)
\end{aligned}
$$

Putting $n=1,2,3, \ldots \ldots \ldots n$,we get

$$
\begin{aligned}
& u_{1}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}\right) \\
& u_{2}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right) \\
& u_{3}=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{7}\right)
\end{aligned}
$$

$u_{n}=\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)$
Adding $S_{n}=\frac{1}{2}\left(1-\frac{1}{2 n+1}\right)=\frac{1}{2}$
\Rightarrow The sequence $\left\{s_{n}\right\}$ converges to $\frac{1}{2}$
\Rightarrow The given series converges to $\frac{1}{2}$.

Assignment

Test the nature of the following series:
(i) $1^{2}+3^{2}+5^{2}+\ldots \ldots \ldots \infty$
(ii) $1 / 1.3+1 / 3.5+1 / 5.7+\ldots \ldots \ldots \infty$

NPTEL LINKS FOR REFERENCE

real numbers	$\underline{\text { http://nptel.ac.in/courses/122104017/1 }}$
sequences	$\underline{\text { http://nptel.ac.in/courses/122104017/2 }}$
sequences	$\underline{\text { http://nptel.ac.in/courses/122104017/3 }}$
Series of numbers.	$\underline{\text { http://nptel.ac.in/courses/122101003/2 }}$
Infinite series partial sum	$\underline{\text { http://nptel.ac.in/courses/122104017/1 }}$

Convergence of G.P. Series :

敂 The Geometric Series $1+\mathrm{x}+x^{2}+x^{3}+\ldots \ldots \ldots \infty$
(Converges if $-1<\mathrm{x}<1$, i.e. $|x|<1$

- Diverges if $\mathrm{x} \geq 1$

Oscillates finitely if $x=-1$
Oscillates infinitely if $\mathrm{x} \leq 1$
Proof :- (i) when $|x|<1$.

$$
\text { Since }|x|<1, x^{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

$$
S_{n}=1+\mathrm{x}+x^{2}+x^{3}+\ldots \ldots \ldots . .+x^{n-1}
$$

$$
=\frac{1\left(1-x^{n}\right)}{1-x}=\frac{1}{1-x}-\frac{x^{n}}{1-x}
$$

$\lim _{n \rightarrow \infty} S_{n}=\frac{1}{1-x}$ (finite value)
\Rightarrow The sequence $\left\{S_{n}\right\}$ is convergent.
\Rightarrow The given series is convergent.
(ii) when $\mathrm{x} \geq 1$

Subcase I:- when x = 1

$$
\begin{aligned}
& S_{n}=1+1+1+\ldots \ldots \ldots \ldots . . \text { To n terms. } \\
& S_{n}=\mathrm{n} \\
& \lim _{n \rightarrow \infty} S_{n}=\infty
\end{aligned}
$$

The sequence $\left\{S_{n}\right\}$ diverges to ∞.
\Rightarrow The given series diverges to ∞.
Subcase II :- When $\mathrm{x}>1, x^{n} \rightarrow \infty$ as $\mathrm{n} \rightarrow \infty$

$$
\begin{aligned}
& S_{n}=1+\mathrm{x}+x^{2}+\ldots \ldots \ldots \ldots . . \text { to } \mathrm{n} \text { terms } \\
& S_{n}=\frac{1\left(x^{n}-1\right)}{x-1}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} S_{n}=\infty
$$

\Rightarrow The sequence $\left\{S_{n}\right\}$ diverges to ∞.
\Rightarrow The given series diverges to ∞.
(iii) when $x=-1$

$$
S_{n}=1-1+1-1+\ldots \ldots \ldots . . \text { to } n \text { terms. }
$$

$=1$ or 0 according as n is odd or even.

$$
\Longrightarrow \lim _{n \rightarrow \infty} S_{n}=1 \text { or } 0
$$

\Rightarrow The sequence $\left\{S_{n}\right\}$ oscillates finitely.
\Rightarrow The given series oscillates finitely. When $\mathrm{x}<-1$

$$
X<-1 \text { or }-x>1
$$

Let $\mathrm{r}=-\mathrm{x}$, then $\mathrm{r}>1$

$$
\therefore r^{n} \rightarrow \infty \text { as } n \rightarrow \infty \text {. }
$$

$$
S_{n}=1+\mathrm{x}+x^{2}+\ldots \ldots \ldots \ldots . . \text { to } \mathrm{n} \text { terms. }
$$

$$
=\frac{1-x^{n}}{1-x}=\frac{1-(-r)^{n}}{1-(-r)} \quad[\because x=-r]
$$

$$
=\frac{1-(-r)^{n}}{1+r}=\frac{1-r^{n}}{1+r} \text { or } \frac{1+r^{n}}{1+r} \text { according as } \mathrm{n} \text { is even or }
$$

odd.

$$
\lim _{n \rightarrow \infty} S_{n}=\frac{1-\infty}{1+r} \text { or } \frac{1+\infty}{1+r}=-\infty \text { or }+\infty
$$

\Rightarrow The sequence $\left\{S_{n}\right\}$ oscillates infinitely.
\Rightarrow The given series oscillates infinitely.
Q 5 Test the convergence of the following series:
$1-\frac{3}{4}+\frac{9}{16}-\frac{27}{64}+$
∞
$2+3+\frac{9}{2}+\frac{27}{4}+$ ∞
$\frac{3}{4}+\frac{3}{4}+\frac{3}{4}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \infty$
$\frac{3}{4}-\frac{3}{4}+\frac{3}{4}-\frac{3}{4}$
$1-\frac{5}{2}+\frac{25}{4}-\frac{125}{8}+$

Geometric Series - r $=1.5$

Necessary condition for convergence :
If a series $\sum u_{n}$ is convergent ,then $\lim _{n \rightarrow \infty} u_{n}=0$
Proof : Let S_{n} denotes the nth partial sum of the series $\sum u_{n}$.
The $\sum u_{n}$ is convergent $\Rightarrow\left\{S_{n}\right\}$ is convergent.
$\lim _{n \rightarrow \infty} S_{n}$ is finite or unique $=\mathrm{s}$ (say)
$\lim _{n \rightarrow \infty} S_{n-1}=\mathrm{s}$
Now $S_{n}-S_{n-1}=u_{n}$
$\therefore \lim _{n \rightarrow \infty}\left(S_{n}-S_{n-1}\right)=\lim _{n \rightarrow \infty} u_{n}=\mathrm{s}-\mathrm{s}=0$
Hence $\sum u_{n}$ is convergent $\Rightarrow \lim _{n \rightarrow \infty} u_{n}=0$
Converse of the above theorem is not always true, i.e. the nth term may tend to zero as $\mathrm{n} \rightarrow \infty$ even if the series is not convergent.
e.g. $1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots \ldots \ldots \ldots+\frac{1}{\sqrt{n}}+\ldots \ldots \ldots \ldots \infty$
$>\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+\ldots \ldots \ldots+\frac{1}{\sqrt{n}}$
$\left(\because \mathrm{m}<\mathrm{n} \Rightarrow \frac{1}{\sqrt{m}}>\frac{1}{\sqrt{n}}\right)$
$=\frac{n}{\sqrt{n}}=\sqrt{n}$

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \sqrt{n}=\infty
$$

\Longrightarrow The series is divergent, as $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$
Thus $\lim _{n \rightarrow \infty} u_{n}=0$ is a necessary condition but not a sufficient condition for convergence of $\sum u_{n}$.

Results :

$\sum u_{n}$. is convergent $\Longrightarrow \lim _{n \rightarrow \infty} u_{n}=0$
$\lim _{n \rightarrow \infty} u_{n}=0 \Longrightarrow \sum u_{n}$. may or may not be convergent.
$\lim _{n \rightarrow \infty} u_{n} \neq 0 \Longrightarrow \sum u_{n}$. is not convergent.
A positive term series either converges or diverges to $+\infty$.

Comparison Test :

Let $\sum u_{n}$ and $\sum v_{n}$ be two positive term series
If $\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=1$ (finite or non zero), then $\sum u_{n}$ and $\sum v_{n}$ both converge or diverge together.
$\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=0$ and $\sum v_{n}$ converges, then $\sum u_{n}$ also converges.
$\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=\infty$ and $\sum v_{n}$ diverges, then $\sum u_{n}$ also diverges.

Assignment

Examine the convergence of the series
$1+1 / 4^{2 / 3}+1 / 9^{2 / 3}+1 / 16^{2 / 3}+$

Convergence of Hyper-Harmonic Series (p-series)

The series $\sum \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\ldots \ldots .+\frac{1}{n^{p}}+\ldots . . \infty$
Converges if $\mathrm{p}>1$
Diverges if $\mathrm{p} \leq 1$
Q $6 \quad$ Test the convergence of the series

$$
\frac{1}{2}+\frac{1}{3^{2}}+\frac{1}{2^{3}}+\frac{1}{3^{4}}+\ldots \ldots \infty
$$

This can be written as
$\left(\frac{1}{2}+\frac{1}{2^{3}}+\frac{1}{2^{5}}+\ldots . .+\infty\right)+\left(\frac{1}{3^{2}}+\frac{1}{3^{4}}+\frac{1}{3^{6}}+\ldots . .+\infty\right)$
$=\quad \sum u_{n}+\sum v_{n}$
$\sum u_{n}$ being a G.P.series with c.r. $=\frac{1}{4}<1$
$\Rightarrow \sum u_{n}$ is convergent.
$\sum v_{n}$ is a G.P.series with c.r. $=\frac{1}{9}<1$
$\Rightarrow \sum v_{n}$ is also convergent.
$\Rightarrow \sum u_{n}+\sum v_{n}$ is also convergent.

$$
\frac{1}{\sqrt{1.2}}+\frac{1}{\sqrt{2.3}}+\frac{1}{\sqrt{3.4}}+\ldots \ldots \infty
$$

$$
\text { Here } u_{n}=\frac{1}{\sqrt{n(n+1)}}
$$

$$
=\frac{1}{\sqrt[n]{\left(1+\frac{1}{n}\right)}}
$$

$$
\text { Take } v_{n}=\frac{1}{n}
$$

$$
\frac{u_{n}}{v_{n}}=\frac{1}{\sqrt{\left(1+\frac{1}{n}\right)}}
$$

$\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{\left(1+\frac{1}{n}\right)}}=1\left(\because \frac{1}{n} \rightarrow 0\right.$ as $\left.\mathrm{n} \rightarrow \infty\right)$
$=$ finite or non zero
So, by comparison test, both the series $\sum u_{n}$ and $\sum v_{n}$ converge or diverge together.But the series $\sum v_{n}=\sum \frac{1}{n}$ is divergent as $\mathrm{p}=1$
Hence, the given series $\sum u_{n}$ is also divergent.

Q 8 Test the convergence of the series
$\sum\left(\sqrt{n^{4}+1}-\sqrt{n^{4}-1}\right)$
Here $u_{n}=\sqrt{n^{4}+1}-\sqrt{n^{4}-1}$
Rationalizing, we get

$$
\begin{aligned}
u_{n}= & \frac{n^{4}+1-n^{4}+1}{\sqrt{n^{4}+1}+\sqrt{n^{4}-1}} \\
= & \frac{2}{\sqrt{n^{4}+1}+\sqrt{n^{4}-1}} \\
= & \frac{2}{n^{2} \sqrt{1+\frac{1}{n^{4}}}+\sqrt{1-\frac{1}{n^{4}}}}
\end{aligned}
$$

Take $v_{n}=\frac{1}{n^{2}}$
$\frac{u_{n}}{v_{n}}=\frac{2}{\sqrt{1+\frac{1}{n^{4}}}+\sqrt{1-\frac{1}{n^{4}}}}$
$\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=\frac{2}{1+1}=\frac{2}{2}=1$
(finite and non-zero)
So, by the comparison test, both the series $\sum u_{n}$ and $\sum v_{n}$ converge or diverge together.But the series $\sum v_{n}=\sum \frac{1}{n^{2}}$ is
convergent as $p=2>1$
Hence, the given series $\sum u_{n}$ is also convergent.

Q 9 Test the convergence of the series

$$
\sum \cot ^{-1} n^{2}
$$

Here $u_{n}=\cot ^{-1} n^{2}$

$$
=\tan ^{-1} \frac{1}{n^{2}} \quad\left(\because \cot ^{-1} x=\tan ^{-1} \frac{1}{x}\right)
$$

$$
=\frac{\tan ^{-1} \frac{1}{n^{2}}}{\frac{1}{n^{2}}} \cdot \frac{1}{n^{2}} \text { (Dividing and multiplying by } \frac{1}{n^{2}} \text {) }
$$

Take $v_{n}=\frac{1}{n^{2}}$
$\frac{u_{n}}{v_{n}}=\frac{\tan ^{-1} \frac{1}{n^{2}}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=1 \quad\left(\because \frac{\tan ^{-1} x}{x}=1\right)$
(finite and non-zero)
So, by the comparison test, both the series $\sum u_{n}$ and $\sum v_{n}$ converge or diverge together.But the series $\sum v_{n}=\sum \frac{1}{n^{2}}$ is convergent as $\mathrm{p}=2$ >1
Hence, the given series $\sum u_{n}$ is also convergent.

Assignment

Test the convergence and divergence of the following series
(i) $\quad \sum \cot ^{-1} n^{2}$
(ii) $\quad \sum\left(2 n^{3}+5\right) /\left(4 n^{5}+1\right)$

D'Alembert' Ratio Test : If $\sum u_{n}$ is a positive term series, and if $\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}$, then
$\sum u_{n}$ is convergent if $l>1$
$\sum u_{n}$ is divergent if $1<1$
Test fails if $\mathrm{l}=1$
Q 9 Test the convergence of the series
$\frac{2}{1}+\frac{2.5 \cdot 8}{1.5 \cdot 9}+\frac{2.5 \cdot 8 \cdot 11}{1.5 \cdot 9.13}+\ldots \ldots \ldots \ldots . \infty$
The given series can be written as
$\frac{2.5}{1.5}+\frac{2.5 .8}{1.5 .9}+\frac{2 \cdot 5 \cdot 8.11}{1 \cdot 5 \cdot 9.13}+\ldots \ldots . \ldots . . \infty$
Here $u_{n}=\frac{2 \cdot 5 \cdot 8.11 \ldots \ldots \ldots(3 n-1)}{1 \cdot 5 \cdot 9.13 \ldots \ldots \ldots(4 n-3)}$
$u_{n+1}=\frac{2 \cdot 5 \cdot 8 \cdot 11 \ldots \ldots \ldots .(3 n-1)(3 n+2)}{1 \cdot 5 \cdot 9.13 \ldots \ldots \ldots(4 n-3)(4 n+1)}$
$\frac{u_{n}}{u_{n+1}}=\frac{4 n+1}{3 n+2}$
$\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=\lim _{n \rightarrow \infty} \frac{4+\frac{1}{n}}{3+\frac{2}{n}}=\frac{4}{3}>1 \quad\left(\because \frac{1}{n} \rightarrow 0\right.$ as $\left.\mathrm{n} \rightarrow \infty\right)$
So by D' Alembert' Ratio Test, the given series $\sum u_{n}$ is also convergent.
Q 10 Test the convergence of the series
$\frac{x}{2 \sqrt{3}}+\frac{x^{2}}{3 \sqrt{4}}+\frac{x^{3}}{4 \sqrt{5}}+$ ∞

Here $u_{n}=\frac{x^{n}}{n+1 \sqrt{n+3}}$
$u_{n+1}=\frac{x^{n+1}}{n+2 \sqrt{n+4}}$
$\frac{u_{n}}{u_{n+1}}=\frac{x^{n}}{n+1 \sqrt{n+3}} \times \frac{n+2 \sqrt{n+4}}{x^{n+1}}$
$\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=\lim _{n \rightarrow \infty} \frac{1+\frac{2}{n}}{1+\frac{1}{n}} \cdot \frac{\sqrt{1+\frac{4}{n}}}{\sqrt{1+\frac{3}{n}}} \frac{1}{x}=\frac{1}{x}$

So by D' Alembert' Ratio Test, the given series $\sum u_{n}$ is convergent if $\frac{1}{x}>1$ i.e. $\mathrm{x}<1$, and divergent if $\frac{1}{x}<1$ i.e. $\mathrm{x}>1$.

Ratio Test fails if $\frac{1}{x}=1$ i.e. $\mathrm{x}=1$
For $\mathrm{x}=1, u_{n}=\frac{1}{n+1 \sqrt{n+3}}$

$$
=\frac{1}{n^{\frac{3}{2}}\left(1+\frac{1}{n}\right) \sqrt{1+\frac{3}{n}}}
$$

Take $\quad v_{n}=\frac{1}{n^{\frac{3}{2}}}$

$$
\frac{u_{n}}{v_{n}}=\frac{1}{\left(1+\frac{1}{n}\right) \sqrt{1+\frac{3}{n}}}=\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=1 \text { (finite and non-zero) }
$$

So, by the comparison test, both the series $\sum u_{n}$ and $\sum v_{n}$ converge or diverge together.But the series $\sum v_{n}=\sum \frac{1}{n^{\frac{3}{2}}}$ is convergent as $\mathrm{p}=\frac{3}{2}$
>1
Hence, the given series $\sum u_{n}$ is also convergent.

Assignment

Test the convergence and divergence of the following series

> (i) $\sum \mathrm{n}^{1 / 2} /\left(\mathrm{n}^{2}+1\right)$
> (ii) $\sum\left(\mathrm{n}^{2}-1\right)^{1 / 2} /\left(\mathrm{n}^{3}+1\right)$

Rabee's Test : If $\sum u_{n}$ is a positive term series, and if $\lim _{n \rightarrow \infty} n\left(\frac{u_{n}}{u_{n+1}}-1\right)$, then
$\sum u_{n}$ is convergent if $l>1$
$\sum u_{n}$ is divergent if $l<1$
Test fails if $\mathrm{l}=1$
Q 11 Test the convergence of the series

$$
1+\frac{1}{2} \cdot \frac{x^{2}}{4}+\frac{1.3 .5}{2.4 .6} \frac{x^{4}}{8}+\frac{1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6.8 \cdot 10} \frac{x^{6}}{12}+
$$

After neglecting first term
$u_{n}=\frac{1 \cdot 3 \cdot 5.7 \ldots \ldots(4 n-3)}{2 \cdot 4.6 .8 \cdot 10 \ldots(4 n-2)} \cdot \frac{x^{2 n}}{4 n}$
$u_{n+1}=\frac{1 \cdot 3 \cdot 5 \cdot 7 \ldots \ldots(4 n-3)(4 n-1)(4 n+1)}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10 \ldots .(4 n-2) 4 n(4 n+2)} \cdot \frac{x^{2 n+2}}{4 n+4}$
$\frac{u_{n}}{u_{n+1}}=\frac{4 n(4 n+2)}{(4 n-1)(4 n+1)} \cdot \frac{4 n+4}{4 n} \cdot \frac{1}{x^{2}}$
$\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=\lim _{n \rightarrow \infty} \frac{(4 n+2)(4 n+4)}{(4 n-1)(4 n+1)} \cdot \frac{1}{x^{2}}=\frac{1}{x^{2}}$

So by D' Alembert's Ratio Test, the given series $\sum u_{n}$ is convergent if
$\frac{1}{x^{2}}>1$ i.e. $x^{2}<1$, and divergent if $\frac{1}{x^{2}}<1$ i.e. $x^{2}>1$.
Ratio Test fails if $\frac{1}{x^{2}}=1$ i.e. $x^{2}=1$
$\frac{u_{n}}{u_{n+1}}=\frac{(4 n+2)(4 n+4)}{\left(16 n^{2}-1\right)}$
$\frac{u_{n}}{u_{n+1}}-1=\frac{16 n^{2}+24 n+8-16 n^{2}+1}{\left(16 n^{2}-1\right)}$
$n\left(\frac{u_{n}}{u_{n+1}}-1\right)=\frac{n(24 n+9)}{\left(16 n^{2}-1\right)}$
$\lim _{n \rightarrow \infty} n\left(\frac{u_{n}}{u_{n+1}}-1\right)=\lim _{n \rightarrow \infty} \frac{24+\frac{9}{n}}{16-\frac{1}{n^{2}}}=\frac{24}{16}=\frac{3}{2}>1$
So by Raabe's Ratio Test, the given series is convergent.
Hence, the given series is convergent if $x^{2} \leq 1$, and divergent if $x^{2}>1$.

Logarithmic Test : If $\sum u_{n}$ is a positive term series, and if $\lim _{n \rightarrow \infty} n \log \frac{u_{n}}{u_{n+1}}$,then
$\sum u_{n}$ is convergent if $l>1$
$\sum u_{n}$ is divergent if $\mathrm{l}<1$
Test fails if l=1
Q 12 Test the convergence of the series

$$
x+\frac{2^{2} x^{2}}{2!}+\frac{3^{3} x^{3}}{3!}+\frac{4^{4} x^{4}}{4!}+
$$

$$
\begin{gathered}
u_{n}=\frac{n^{n} x^{n}}{n!} \\
u_{n+1}=\frac{(n+1)^{n+1} x^{n+1}}{n+1!} \\
\frac{u_{n}}{u_{n+1}}=\frac{n^{n} x^{n}}{n!} \cdot \frac{n+1!}{n+1^{n+1} x^{n+1}} \\
\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=\frac{n^{n}}{n+1^{n+1}} \cdot \frac{1}{x}=\left(\frac{n}{n+1}\right)^{n} \cdot \frac{1}{x} \\
=\frac{1}{\left(1+\frac{1}{n}\right)^{n}} \cdot \frac{1}{x}=\frac{1}{e x}
\end{gathered}
$$

So by Logarithmic Test, the given series $\sum u_{n}$ is convergent if $\frac{1}{e x}>1$ i.e. $\mathrm{x}<\frac{1}{e}$, and divergent if $\frac{1}{e x}<1$ i.e. $\mathrm{x}>\frac{1}{e}$
Logarithmic Test fails if $\frac{1}{e x}=1$ i.e. $x=\frac{1}{e}$
For $\mathrm{x}=\frac{1}{e}$
$\frac{u_{n}}{u_{n+1}}=\frac{e}{\left(1+\frac{1}{n}\right)^{n}}$
$\log \frac{u_{n}}{u_{n+1}}=\log \mathrm{e}-\mathrm{n} \log \left(1+\frac{1}{n}\right)$

$$
\begin{aligned}
& =1-\mathrm{n}\left(\frac{1}{n}-\frac{1}{2 n^{2}}+\frac{1}{3 n^{3}} \ldots \ldots \ldots \infty\right) \\
& =1-1+\frac{1}{2 n}-\frac{1}{3 n^{2}}+\frac{1}{3 n^{3}} \ldots \ldots \ldots \infty \\
& =\frac{1}{2}<1
\end{aligned}
$$

By Logarithmic Test, the series is divergent.Hence the given series $\sum u_{n}$ is convergent if $\mathrm{x}<\frac{1}{e}$, and divergent if $\mathrm{x} \geq \frac{1}{e}$.

Gauss's Test : If for the positive term series $\sum u_{n}, \frac{u_{n}}{u_{n+1}}$ can be expanded in the form

$$
\frac{u_{n}}{u_{n+1}}=1+\frac{\lambda}{n}+\mathrm{O}\left(\frac{1}{n^{2}}\right)
$$

Then $\sum u_{n}$ is convergent if $\lambda>1$ and divergent if $\lambda \leq 1$.
Q 12 Test the convergence of the series

$$
\frac{1^{2}}{2^{2}}+\frac{1^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} x+\frac{\frac{1}{}^{2} \cdot 3^{2} \cdot 5^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2}} x^{2}+\ldots \ldots \ldots \ldots \infty
$$

$$
u_{n}=\frac{1^{2} \cdot 3^{2} \cdot 5^{2} \ldots \ldots .(2 n-1)^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2} \ldots \ldots \ldots(2 n)^{2}} x^{n-1}
$$

$$
u_{n+1}=\frac{1^{2} \cdot 3^{2} \cdot 5^{2} \ldots \ldots(2 n-1)^{2}(2 n+1)^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2} \ldots \ldots \ldots(2 n)^{2}(2 n+2)^{2}} x^{n}
$$

$\frac{u_{n}}{u_{n+1}}=\frac{(2 n+2)^{2}}{(2 n+1)^{2}} \cdot \frac{1}{x}$
$\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=\left(\frac{2+\frac{2}{n}}{2+\frac{1}{n}}\right)^{2} \cdot \frac{1}{x}=\frac{1}{x}$

So by Ratio Test, the given series $\sum u_{n}$ is convergent
>1 i.e. $\mathrm{x}<1$, and divergent if $\frac{1}{x}<1$ i.e. $\mathrm{x}>1$
Ratio Test fails if $\frac{1}{x}=1$ i.e. $x=1$
For $\mathrm{x}=1$
$\frac{u_{n}}{u_{n+1}}=\frac{(2 n+2)^{2}}{(2 n+1)^{2}}=\frac{4 n^{2}+8 n+4}{4 n^{2}+4 n+1}$
$\frac{u_{n}}{u_{n+1}}-1=\frac{4 n^{2}+8 n+4-4 n^{2}-4 n-1}{4 n^{2}+4 n+1}$
$\lim _{n \rightarrow \infty} n\left(\frac{u_{n}}{u_{n+1}}-1\right)=\lim _{n \rightarrow \infty} \frac{n(4 n+3)}{4 n^{2}+4 n+1}$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{n(4 n+3)}{4 n^{2}+4 n+1} \\
& =\lim _{n \rightarrow \infty} \frac{4+\frac{3}{n}}{4+\frac{4}{n}+\frac{1}{n^{2}}}=1
\end{aligned}
$$

Raabe's test fail.

$$
\text { Now } \begin{aligned}
\frac{u_{n}}{u_{n+1}} & =\frac{\left(1+\frac{1}{n}\right)^{2}}{\left(1+\frac{1}{2 n}\right)^{2}} \\
& =\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right)\left(1+\frac{1}{2 n}\right)^{-2} \\
& =\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right)\left[1+(-2) \frac{1}{2 n}+O\left(\frac{1}{n^{2}}\right)\right] \\
& =\left[1+\frac{2}{n}-\frac{1}{n}+O\left(\frac{1}{n^{2}}\right)\right] \\
& =\left[1+\frac{1}{n}+O\left(\frac{1}{n^{2}}\right)\right]
\end{aligned}
$$

It is of the form

$$
\frac{u_{n}}{u_{n+1}}=1+\frac{\lambda}{n}+\mathrm{O}\left(\frac{1}{n^{2}}\right)
$$

$\lambda=1$ By Gauss's test, the series is divergent for $\mathrm{x}=1$. Hence the given series is convergent if $x<1$ and divergent if $x \geq 1$.

Cauchy's Root Test : If $\sum u_{n}$ is a positive term series, and if $\lim _{n \rightarrow \infty}\left(u_{n}\right)^{\frac{1}{n}}=1$, then $\sum u_{n}$ is convergent if $\mathrm{l}<1$ $\sum u_{n}$ is divergent if $\mathrm{l}>1$
Test fails if $\mathrm{l}=1$

Q 15 Test the convergence of the series

$$
\sum\left(\frac{n x}{n+1}\right)^{n}
$$

Here $u_{n}=\left(\frac{n x}{n+1}\right)^{n}$

$$
\left(u_{n}\right)^{\frac{1}{n}}=\frac{x}{1+\frac{1}{n}}=\mathrm{x}
$$

So, by Cauchy's Root test, the series is convergent if $\mathrm{x}<1$ and divergent if x
>1.
For $\mathrm{x}=1, u_{n}=\left(\frac{n}{n+1}\right)^{n}$
$\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n}}=\frac{1}{e} \neq 0$
The series is divergent for $\mathrm{x}=1$.
Hence, the given series is convergent if $\mathrm{x}<1$ and divergent if $\mathrm{x} \geq 1$.

Assignment

Discuss the convergence of the following series :
(i) $1+2 x / 2!+\left(3^{2} x^{2}\right) / 3!+\left(4^{3} x^{3}\right) / 4!+\ldots \ldots \ldots$.
(ii) $x / 1.2+x^{2} / 3.4+x^{3} / 5.6+\ldots \ldots \ldots \ldots(x>0)$

Cauchy's Integral Test : If for $\mathrm{x} \geq 1, \mathrm{f}(\mathrm{x})$ is a non-negative, decreasing function of x such that $\mathrm{f}(\mathrm{n})=u_{n}$ for all positive integral value of n, then the series $\sum u_{n}$ and the integral $\int_{1}^{\infty} f(x) d x$ converge or diverge together.
Q 16 Show that the series $\sum \frac{1}{n^{p}}$ converges if $\mathrm{p}>1$ and diverges if $0<p \geq 1$
Here $u_{n}=\frac{1}{n^{p}}=\mathrm{f}(x)$
$\therefore \mathrm{f}(x)=\frac{1}{x^{p}}$
For $\mathrm{x} \geq 1, \mathrm{f}(x)$ is +ve and decreasing function of x .
\therefore Cauchy's Integral test is applicable.
Case I: When $\mathrm{p} \neq 1$
$\int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} \frac{1}{x^{p}} d x=\int_{1}^{\infty} x^{-p} d x$

$$
\left[\frac{x^{-p+1}}{-p+1}\right]_{1}^{\infty}
$$

Subcase I: when $\mathrm{p}>1 \Rightarrow \mathrm{p}-1>0$, so that
$\int_{1}^{\infty} f(x) d x=$
$\frac{1}{p-1}\left[\frac{1}{x^{p-1}}\right]_{1}^{\infty}=-\frac{1}{p-1}[0-1]$

$$
=\frac{1}{p-1}=\text { finite value }
$$

$\Rightarrow \quad \int_{1}^{\infty} f(x) d x$ converges.
$\Rightarrow \sum u_{n}$ is convergent.
Subcase II : when $0<p<1,1-p>0$, so that
$\int_{1}^{\infty} f(x) d x=$
$\frac{1}{1-p}\left[x^{1-p}\right]_{1}^{\infty}=\frac{1}{1-p}[\infty-1]$

$$
=\infty
$$

$\Rightarrow \quad \int_{1}^{\infty} f(x) d x$ diverges.
$\Rightarrow \sum u_{n}$ is divergent.
Case II: when $\mathrm{p}=1, \mathrm{f}(x)=\frac{1}{x}$
$\int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} \frac{1}{x} d x=[\log \mathrm{x}]_{1}^{\infty}=\log \infty-\log 1=\infty-0=\infty$
$\Rightarrow \quad \int_{1}^{\infty} f(x) d x$ diverges.
$\Rightarrow \sum u_{n}$ is divergent.

NPTEL LINKS FOR REFERENCE

Tests infinite series	$\underline{\text { http://nptel.ac.in/courses/1221040 }} \frac{\underline{17 / 14}}{}$
Test of convergence	$\underline{\text { http://nptel.ac.in/courses/1221010 }}$

Alternating Series

A series in which the terms are alternatively positive or negative is called an alternating series.
Leibnitz's rule : An alternating series

$$
u_{1-} u_{2}+u_{3}-u_{4}+
$$

Converges if (i) each term is numerically less than its proceeding term, and
(ii) $\lim _{n \rightarrow \infty} u_{n}=0$

If $\lim _{n \rightarrow \infty} u_{n} \neq 0$, the given series is oscillatory.

Assignment

Test for the convergence of the following series :
(i) $2-3 / 2+4 / 3-5 / 4+$
(ii) $\quad \sum(-1)^{\mathrm{n}-1} \cdot \mathrm{n} /(2 \mathrm{n}-1)$

Series of positive or negative terms

- The series of positive terms and the alternating series are special types of these series with arbitrary signs.
- Def. (1) If the series of arbitrary terms
$u_{1}+u_{2}+u_{3}+\ldots \ldots \ldots .+\mathrm{u}_{\mathrm{n}}+\ldots \ldots \ldots .$.
be such that the series $\left|u_{1}\right|+\left|u_{2}\right|+\left|u_{3}\right|+\ldots \ldots \ldots+\left|u_{n}\right|+$
is convergent, then the series $\Sigma \mathrm{u}_{\mathrm{n}}$ is said to be absolutely convergent.
(2) If $\Sigma\left|u_{n}\right|$ is divergent but $\Sigma \mathrm{u}_{\mathrm{n}}$ is convergent, then $\Sigma\left|u_{n}\right|$ is said to be conditionally convergent.

