DRONACHARYA COLLEGE OF ENGINEERING, GURGAON Department of Applied Sciences and Humanities Subject: Mathematics – I (MATH – 101 – F) Question Bank

Short Type Question

Q.1 Discuss the convergence & divergence of the geometric series.

Q.2
$$\sum_{n=1}^{\infty} (\sqrt[3]{n^3 + 1} - n)$$

Q.3 $\sum (\sqrt{n^4 + 1} - \sqrt{n^4 - 1})$

Q.4
$$\sum \frac{\sqrt{n}}{n^2+1}$$

Q.5
$$\sum \{\sqrt[3]{n+1} - \sqrt[3]{n}\}$$

Q.6 Test the convergence of the series whose nth term is $\frac{n^{n^2}}{(n+1)^{n^2}}$

- Q.7 Give the statement of D'Alembert ratio test & Gauss test.
- Q.8. Test the convergence of the series $\sum \frac{2n^3+5}{4n^5+1}$ Q.9 Test the convergence of the series $\sum \frac{n^2}{2^n}$ Q. 10 Test the convergence of the series $\sum \frac{1}{n} \sin \frac{1}{n}$
- Q.11 Test the convergence of the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2+1}$ Q.12 Test the convergence of the series $\sum (\sqrt{n^4+1} - \sqrt{n^4-1})$ Q.13 Test the convergence of the series $\sum \frac{n^2(n+1)^2}{n!}$
- Q.14 Test the series for convergence and absolute convergence:

Q.15 Discuss the convergence of the series:

$$1 - \frac{1}{3} + \frac{1}{2} - \frac{1}{3^3} + \frac{1}{2^2} - \frac{1}{3^5} \dots \dots \dots \dots \infty$$
SECTION -II
Q.1 Define elementary matrices with exmple
Q.2 The rank of the matrix
$$\begin{bmatrix} 2 & 3 & 4 & -1 \\ 5 & 2 & 0 & -1 \\ -4 & 5 & 12 & -1 \end{bmatrix}$$
 is......
Q.3 Define rank of a matrix & find The rank of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$$
 is...
Q.4 The inverse of the matrix
$$\begin{bmatrix} 2 & 1 & -1 \\ 0 & 2 & 1 \\ 5 & 2 & -3 \end{bmatrix}$$
 is....
Q.5 Is the matrix
$$\begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$$
 orthogonal ?
Q.6 The eigen value of the matrix
$$\begin{bmatrix} 1 & 2 & 3 & 5 \\ 2 & 6 & 4 & 6 \\ 7 & 3 & 8 & 2 \\ 4 & 3 & 0 & 5 \end{bmatrix}$$
 is....
Q.7 The sum of the eigen values of
$$\begin{bmatrix} 1 & 2 & 3 & 5 \\ 2 & 6 & 4 & 6 \\ 7 & 3 & 8 & 2 \\ 4 & 3 & 0 & 5 \end{bmatrix}$$
 is....
Q.8: The product of the eigen values of
$$\begin{bmatrix} 2 & 3 & -2 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$
 is....
Q.9 The eigen values of the matrix
$$\begin{bmatrix} 2 & 7 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 is.....
Q.10 The characteristic equation of
$$\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 is.....
Q.11 Using Cayley Hamilton theorem find the inverse of the matrix
$$\begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}$$

Q.12 Are the vectors (1,2,1),(2,1,4) & (4,5,6) are linear dependent ?
Q.13 What will be the product of eigen values of singular Matrix

Q.14 using Cayley-hamilton theorem , find A^6 if $A = \begin{bmatrix} 2 & 1 \\ 5 & -2 \end{bmatrix}$

Q.15 Determine the nature of the Quadratic form $2x^2 + 2y^2 + 3z^2 + 2xy - 4yz - 4xz$

SECTION -III

Q.1. If $u = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$

Q. 2 Prove that Expand tanx in powers of $\left(x - \frac{\pi}{4}\right)$ by using Taylor'sseries.

- Q.3 Prove that $\log(1 + x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \dots$
- Q.4 If $u = \frac{x^3 y^3}{x^3 + y^3}$, show that $x \frac{\partial V}{\partial x} + y \frac{\partial V}{\partial y} = 3V$
- Q.5 If $= sin^{-1} \frac{x^2 + y^2}{x + y}$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = tanu$

Q.6 If
$$u = sin^{-1}\frac{x}{y} + tan^{-1}\frac{y}{x}$$
, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$

Q.7 If
$$u = e^{xyz}$$
 then find $\frac{\partial^3 u}{\partial x \partial y \partial z}$

Q.8 If
$$x = r \sin \theta \, \cos \phi$$
, $y = r \sin \theta \, \sin \phi$, $z = r \cos \theta$, then find $\frac{\partial (r, \theta, \phi)}{\partial (x, y, z)}$

Q.9 Find the asymptotes of the curve $x^3 + y^3 - 3axy = 0$

Q.10 Find the asymptotes parallel to co-ordinates of the curve

$$x^2y^2 - x^2y - y^2x + x + y + 1 = 0$$

Q.11 Find the asymptotes of the following curves $r = a \tan \theta$ Q.12 Expand a^x by using Maclaurine's series

Q.13 If $u = x^3 + y^3$, where $x = a \cos t$, $y = b \sin t$, find du / dt

Q.14 Examine the extreme values of $x^2 + y^2 + 6x + 12$

Q.15 State Leibnitz's Rule (Differentiation under integral sign).

Section-IV

Q.1 Evaluate $\int_0^1 \int_1^{\sqrt{1-x^2}} (y^2) dx dy$ by changing the order of integration.

Q.2 Change the order of integration $\int_0^a \int_y^a \left(\frac{x}{x^2+y^2}\right) dx dy$

Q.3 Evaluate the triple integral $\int_0^1 \int_0^{\sqrt{1}-x^2} \int_0^{\sqrt{1}-x^2-y^2} xyz \, dz \, dy \, dx$

Q.4 write the formula of finding area & volume for double integration.

Q.5 Evaluate $\iint_R xydxdy$, where R is the first quadrant of the circle $x^2 + y^2 = a^2$, where x,y ≥ 0

Q.6 Evaluate $\iint xy(x^2 + y^2)dxdy$ over the positive quadrant of the circle $x^2+y^2 = 1$

Q.7 Write the formula of finding the volume of the solid generated by revolving about both the coordinates axis.

Q.8 Evaluate the integral $\int_0^{\pi} \int_0^{a \sin\theta} r^2 dr d\theta$ Q.9 Transform the integral to Cartesian form $\int_0^{\pi} \int_0^a r^3 \sin\theta \cos\theta dr d\theta$ Q.10 Prove that $\int_0^1 x^4 \left(\log \frac{1}{r} \right)^3 dx = \frac{6}{625}$

Long Type Question

SECTION -I

Test the convergence of the following series.

Q1. $\left(\frac{1}{3}\right)^2 + \left(\frac{1.2}{3.5}\right)^2 + \left(\frac{1.2.3}{3.5.7}\right)^2 + \left(\frac{1.2.3.4}{3.5.7.9}\right)^2 + \dots \dots \infty$ Q2. $\sum \frac{n}{n^2 + 1} x^n$, x > 0Q3. $\left(\frac{2^2}{1^2} - \frac{2}{1}\right)^{-1} + \left(\frac{3^3}{2^3} - \frac{3}{2}\right)^{-2} + \left(\frac{4^4}{3^4} - \frac{4}{3}\right)^{-3} + \dots \dots \infty$ Q4. $\frac{1}{2} + \frac{2}{3}x + \left(\frac{3}{4}\right)^2 x^2 + \left(\frac{4}{5}\right)^3 x^3 + \dots \dots \infty$ Q5. $\sum \left(\frac{nx}{n+1}\right)^n$

$$\frac{1}{\sqrt{2}+1} - \frac{1}{\sqrt{3}+1} + \frac{1}{\sqrt{4}+1} - \frac{1}{\sqrt{5}+1} + \dots - \dots - \infty$$
Q20. Test the convergence and absolute convergence of the series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \cdot n}{n^2 + 1}$$

Q21. Prove that the series converges absolutely

$$\sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{n^3}{(n+1)!}$$
Q22. Show that the series $\frac{\log 2}{2^2} - \frac{\log 3}{3^2} + \frac{\log 4}{4^2} - \dots \infty$ converges.
Q23. Prove that the series $\frac{\sin x}{1^3} - \frac{\sin 2x}{2^3} + \frac{\sin 3x}{3^3} - \dots$ converges absolutely.

Q24. Discuss the convergence and absolute convergence of series

$$x - \frac{x^3}{3} + \frac{x^5}{5} - \dots \dots \dots \dots \dots \infty$$
, x being real.

Q25. For what values of x, the series converges:

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots \dots \dots \dots \dots \dots \dots \dots$$

SECTION -II

- Q1 Use Gauss-Jordan method, find the inverse of the matrix
 - $\begin{bmatrix} 8 & 4 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$
- Q2 Determine the rank of the matrix by reducing it to the normal form
 - $\begin{bmatrix} 6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15 \end{bmatrix}$
- Q3 Find non-singular matrices P and Q such that PAQ is in the normal form for the matrix

 $\begin{bmatrix} 2 & 1 & -3 & 6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$

Q4 Test for consistency and solve the equations

x + 2y + z = 3, 2x + 3y + 2z = 5, 3x - 5y + 5z = 2, 3x + 9y - z = 4

Q5 For what values of a and b do the equations x + 2y + 3z = 6,

x + 3y + 5z = 9, 2x + 5y + az = b have (i) unique solution

(ii) no solution (iii) more than one solution

- Q6 Determine the values of λ for which the system may possess non-trivial solution $3x + y \lambda z = 0$, 4x 2y 3z = 0, $2\lambda x + 4y + \lambda z = 0$. For each permissible value of λ , determine the general solution.
- Q7 Are the vectors linearly dependent? If so, find a relation between them. $x_1 = (2,3,1,-1), x_2 = (2,3,1,-2), x_3 = (4,6,2,1)$
- Q8 Represent each of the transformations $x_1 = 3y_1 + 2y_2$, $x_2 = -y_1 + 4y_2$, $y_1 = z_1 + 2z_2$, $y_2 = 3z_1$ by the use of matrices and find the composite transformation which expresses x_1 , x_2 in terms of z_1 , z_2 .

		_[-8	4	1]
Q9(i)	Verify the matrix is orthogonal	$\frac{1}{9}\begin{bmatrix} -8\\1\\4 \end{bmatrix}$	4	-8
		L 4	7	4

- (ii) If A and B are orthogonal matrices, prove that AB is also orthogonal .
- Q10 Find the eigen values and eigen vectors of the matrices

(i)
$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

- Q11 State and prove the properties of eigen values.
- Q12 Find the characteristic equation of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 1 & 1 \end{bmatrix}$$
 Show that the equation is satisfied by A. Also find A⁻¹.

Q13 Using Cayley-Hamilton theorem, find A⁶, if

$$A = \begin{bmatrix} 2 & 1 \\ 5 & -2 \end{bmatrix}$$

Q14 Reduce the matrix into normal form and find its rank

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 3 & 2 & 1 & 2 \\ 2 & -1 & 2 & 5 \\ 5 & 6 & 3 & 2 \\ 1 & 3 & -1 & -3 \end{bmatrix}$$

Q15 Find the characteristic equation of the matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$
 And, hence, find the matrix represented by
$$A^{8} - 5A^{7} + 7A^{6} - 3A^{5} + A^{4} - 5A^{3} + 8A^{2} - 2A + I$$

Q16 Diagonalise the matrices

(i)
$$\begin{bmatrix} -1 & 1 & 2 \\ 0 & -2 & 1 \\ 0 & 0 & -3 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & 4 \\ 2 & -4 & 3 \end{bmatrix}$
Q17 Diagonalise $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3 \end{bmatrix}$ and hence find A⁸.

Q18 Reduce the quadratic form into the canonical form and hence specify the matrix of transformation.

 $3x^{2} + 3y^{2} + 3z^{2} + 2xy + 2yz - 2zx$

Q19 Reduce the given quadratic form into the canonical form and hence specify the matrix of transformation $f(x,y)=8x^2 + 7y^2 + 3z^2 - 12xy + 4zx$

SECTION -III

Q1. If
$$= tan^{-1} \frac{xy}{\sqrt{1+x^2+y^2}}$$
, show that $\frac{\partial^2 u}{\partial x \partial y} = (1+x^2+y^2)^{-\frac{3}{2}}$

Q2. If
$$r^2 = x^2 + y^2 + z^2$$
 and $V = r^m$, show that

 $V_{xx} + V_{yy} + V_{zz} = m(m+1)r^{m-2}$

Q3. If x = r cos
$$\theta$$
, y = r sin θ , prove that

$$\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} = \frac{1}{r} \left[\left(\frac{\partial r}{\partial x} \right)^2 + \left(\frac{\partial r}{\partial y} \right)^2 \right]$$
Q4. If u = f(r), where $r^2 = x^2 + y^2$, prove that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$$
Q5. If $= tan^{-1}\frac{x^3+y^3}{x-y}$, prove that
 $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = sin4u - sin2u = 2cos3usinu$
Q6. If $= cosec^{-1} \left(\frac{x^{1/2}+y^{1/2}}{x^{1/3}+y^{1/3}}\right)^{1/2}$, prove that
 $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{tanu}{144} (13 + tan^2 u)$
Q7. At a given instant the sides of a rectangle are 4 ft. and 3 ft. respectively and
they are increasing at the rate of 1.5 ft/sec. and 0.5 ft./sec. respectively.
Find the rate at which the area is increasing at that instant.
Q8. If $u = f(r, s, t)$ and $r = \frac{x}{y}$, $s = \frac{y}{z}$, $t = \frac{z}{x}$,
prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$
Q9. If $u = \frac{y^2}{2x}$, $v = \frac{x^2+y^2}{2x}$, find $\frac{\partial(u,v)}{\partial(x,y)}$
Q10. If $u = \frac{x+y}{1-xy}$ and $v = tan^{-1}x + tan^{-1}y$, find $\frac{\partial(u,v)}{\partial(x,y)}$

Q10. If
$$u = \frac{dvy}{1-xy}$$
 and $v = tan^{-1}x + tan^{-1}y$, find $\frac{dv}{\partial t}$

Q11. If
$$u = x + y + z$$
, $uv = y + z$, $uvw = z$,

show that
$$\frac{\partial(x,y,z)}{\partial(u,v,w)} = u^2 v$$

- Q12. Expand e^{ax} sinby in powers of x and y as far as the terms of third degree.
- Q13. Expand sin xy in powers of (x 1) and $(y \pi/2)$ upto the second degree terms.
- Q14. Examine the extreme values of $x^3 + y^3 63(x + y) + 12xy$
- Q15. Find the points on the surface $z^2 = xy + 1$ nearest to the origin.

- Q16. A rectangular box open at the top, is to have a volume of 32 c.c. Find the dimensions of the box requiring least material for its construction.
- Q17. Divide 24 into three parts such that the continued product of the first, square of the second and the cube of the third may be maximum.

Q18. Evaluate the integral
$$\int_0^\infty e^{-x} \frac{\sin ax}{x} dx$$

Q19. Prove that $\int_0^\infty e^{-x} \frac{1-e^{-ax}}{x} dx = \log(1+a)$, $(a \ge 0)$
Q20. Using $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$, show that
 $\int_0^\infty e^{-x^2} \cos ax \, dx = \frac{\sqrt{\pi}}{2} e^{-\frac{1}{4}a^2}$
Q21. Prove that $\int_{\frac{\pi}{2}-a}^{\frac{\pi}{2}} \sin \theta \cos^{-1}(\cos \alpha \cos \theta) d\theta = \frac{\pi}{2}(1-\cos \alpha)$
Q22. Evaluate $\int_0^a \frac{\log(1+ax)}{1+x^2} dx$ and hence show that $\int_0^1 \frac{\log(1+x)}{1+x^2} dx = \frac{\pi}{8}\log 2$

SECTION -IV

Q.1 Evaluate
$$\int_0^{2a} \int_0^{\sqrt{ax-x^2}} (x^2 + y^2) dy dx$$

- Q.2 Evaluate $\iint_A xydxdy$, where A is the domain bounded by x axis, ordinate x = 2a and the curve $x^2 = 4ay$.
- Q.3 Show that $\iint_R r^2 sin\theta \, dr d\theta = \frac{2a^3}{3}$, where R is the region bounded by the semi circle r = 2acos θ , above the initial line.
- Q.4 Evaluate $\iint r^3 dr d\theta$ over the area included between the circles r = 2a cos θ , r = 2b cos θ , (b < a).
- Q.5 Evaluate the integral by changing the order of integration $\int_0^a \int_{\frac{x^2}{a}}^{2a-x} xy \, dy dx.$
- Q.6 Evaluate the integral by changing the order of integration $\int_0^\infty \int_0^x x e^{-\frac{x^2}{y}} dy dx$.

- Q.7 Evaluate the triple integral $\int_0^{\log 2} \int_0^x \int_0^{x+\log y} e^{x+y+z} dz dy dx$.
- Q.8 Evaluate the integral by changing into polar co-ordinates: $\int_0^a \int_y^a \frac{x \, dx dy}{x^2 + y^2}$
- Q.9 Evaluate $\iiint \frac{dxdydz}{\sqrt{a^2 x^2 y^2 z^2}}$, over the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$.
- Q.10 Show, by double integration, that the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$.
- Q.11 Find, by double integration, the volume of the sphere $x^2 + y^2 + z^2 = 9$.
- Q.12 Prove that the volume enclosed between the cylinder $x^{2} + y^{2} = 2ax$ and $z^{2} = 2ax$ is $\frac{128}{15}a^{3}$.
- Q.13 Find, by triple integration, the volume in the positive octant bounded by the coordinate planes and the plane x + 2y + 3z = 4.
- Q.14 Find, by double integration, the volume of the solid generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about the x-axis.
- Q.15 State and prove the relation between Beta and Gamma functions.
- Q.16 Prove that $\int_{0}^{1} x^{4} \left(\log \frac{1}{x} \right)^{3} dx = \frac{6}{625}$ Q.17 Prove that $B\left(m, \frac{1}{2}\right) = 2^{2m-1}B(m, m)$ Q.18 Prove that $\Gamma(m)\Gamma\left(m + \frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2m-1}}\Gamma(2m)$ Q.19 Prove that $\int_{0}^{1} \left(\log \frac{1}{y}\right)^{n-1} dy = \Gamma(n), \ n > 0$ Q.20 Show that $B(p,q) = \int_{0}^{\infty} \frac{y^{q-1}}{(1+y)^{p+q}} dy.$